Activated MoS2 by Constructing Single Atomic Cation Vacancies for Accelerated Hydrogen Evolution Reaction

被引:24
|
作者
Ge, Jingmin [1 ]
Chen, Yuxin [1 ]
Zhao, Yufei [1 ]
Wang, Yiping [1 ]
Zhang, Fazhi [1 ]
Lei, Xiaodong [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrogen evolution reaction; single atomic cation vacancies; metal phosphide; MoS2; nickel-cobalt Prussian blue analogues; ENHANCED ELECTROCATALYTIC ACTIVITY; BIFUNCTIONAL ELECTROCATALYSTS; BIMETAL PHOSPHIDE; EFFICIENT; NANOSHEETS; ALKALINE; INTERFACE; HETEROSTRUCTURE; DESIGN; NANOBOXES;
D O I
10.1021/acsami.2c06708
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Regulating the electronic structure of MoS2 by constructing cationic vacancies is an effective method to activate and improve its intrinsic properties. Herein, we synthesize the MoS2-based composite with abundant single atomic Mo cation vacancies through uniformly loading nickel-cobalt-Prussian blue analogues (NiCoPBA) (NiCoPBA-MoS2-V-Mo) by immersing a single Ni atom-decorated MoS2 (Ni-MoS2) into K-3[Co(CN)(6)] solution. Subsequently, NiCoP-MoS2-V-Mo with improved conductivity is obtained by phosphating the composite as a high-efficiency hydrogen evolution reaction (HER) catalyst. Experiments and theoretical calculations indicate that the electrons of NiCoP are spontaneously transferred to the substrate MoS2-V-Mo nanosheets in NiCoP-MoS2-V-Mo, and the moderately oxidized NiCoP is beneficial to the adsorption of OH*. Meanwhile, the mono-atomic Mo cation vacancies of the catalyst modulate the electronic structure of S, optimizing the adsorption of hydrogen in the reaction process. Therefore, NiCoP-MoS2-V-Mo has enhanced chemical adsorption for H* (on MoS2-V-Mo) and OH*(on NiCoP), expediting the water-splitting step and HER catalysis, and benefiting from the regulation of the electronic structure induced by the construction of metallic Mo vacancies in MoS2, the as-prepared catalyst displays an overpotential of only 67 mV at 10 mA cm(-2) with long-term stability (no current decay over 20 h). This work affords not only a kind of efficient HER catalysts but also a new valuable route for developing inexpensive and high-performance catalysts with single atomic cation vacancies.
引用
收藏
页码:26846 / 26857
页数:12
相关论文
共 50 条
  • [1] Activated MoS2by Constructing Single Atomic Cation Vacancies for Accelerated Hydrogen Evolution Reaction
    Ge, Jingmin
    Chen, Yuxin
    Zhao, Yufei
    Wang, Yiping
    Zhang, Fazhi
    Lei, Xiaodong
    ACS Applied Materials and Interfaces, 2022, 14 (23): : 26846 - 26857
  • [2] Sulfur Line Vacancies in MoS2 for Catalytic Hydrogen Evolution Reaction
    Tang, Meng
    Yin, Weinan
    Liu, Shijie
    Yu, Haoxuan
    He, Yuhao
    Cai, Yuntao
    Wang, Longlu
    CRYSTALS, 2022, 12 (09)
  • [3] Boundary activated hydrogen evolution reaction on monolayer MoS2
    Jianqi Zhu
    Zhi-Chang Wang
    Huijia Dai
    Qinqin Wang
    Rong Yang
    Hua Yu
    Mengzhou Liao
    Jing Zhang
    Wei Chen
    Zheng Wei
    Na Li
    Luojun Du
    Dongxia Shi
    Wenlong Wang
    Lixin Zhang
    Ying Jiang
    Guangyu Zhang
    Nature Communications, 10
  • [4] Boundary activated hydrogen evolution reaction on monolayer MoS2
    Zhu, Jianqi
    Wang, Zhi-Chang
    Dai, Huijia
    Wang, Qinqin
    Yang, Rong
    Yu, Hua
    Liao, Mengzhou
    Zhang, Jing
    Chen, Wei
    Wei, Zheng
    Li, Na
    Du, Luojun
    Shi, Dongxia
    Wang, Wenlong
    Zhang, Lixin
    Jiang, Ying
    Zhang, Guangyu
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] Aun atomic clusters on MoS2 nanosheets for hydrogen evolution reaction
    Tian, Jiaqi
    Hou, Lei
    Pei, Wei
    Yu, Xueke
    SURFACES AND INTERFACES, 2025, 56
  • [6] Engineering sulfur vacancies in basal plane of MoS2 for enhanced hydrogen evolution reaction
    Geng, Shuo
    Yang, Weiwei
    Liu, Yequn
    Yu, Yongsheng
    JOURNAL OF CATALYSIS, 2020, 391 (391) : 91 - 97
  • [7] Probing nanostructure MoS2 as catalyst in light activated and electro activated hydrogen evolution reaction
    Nayana, K.
    Sunitha, A. P.
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 4671 - 4676
  • [8] MoS2 Moire Superlattice for Hydrogen Evolution Reaction
    Jiang, Zhenzhen
    Zhou, Wenda
    Hong, Aijun
    Guo, Manman
    Luo, Xingfang
    Yuan, Cailei
    ACS ENERGY LETTERS, 2019, 4 (12) : 2830 - 2835
  • [9] Graphene confined MoS2 particles for accelerated electrocatalytic hydrogen evolution
    Li, Yinchang
    He, Bing
    Liu, Xueqin
    Hu, Xiaoqin
    Huang, Jing
    Ye, Siqin
    Shu, Zhu
    Wang, Yang
    Li, Zhen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (16) : 8070 - 8078
  • [10] Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution
    Charlie Tsai
    Hong Li
    Sangwook Park
    Joonsuk Park
    Hyun Soo Han
    Jens K. Nørskov
    Xiaolin Zheng
    Frank Abild-Pedersen
    Nature Communications, 8