Solution of parametric vertical block linear complementarity problems

被引:2
|
作者
Chakraborty, B. [1 ]
Biswal, M. P. [1 ]
Nanda, S. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
关键词
parametric linear complementarity problem; vertical block matrix; vertical block linear complementarity problem; P-matrix; vertical block P-matrix;
D O I
10.1080/00207160601138962
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The parametric vertical block linear complementarity problem is introduced where the associated vertical block matrix and the column vector are parametric. Assuming the matrix to be a vertical block P-matrix, an algorithm is developed for solving vertical block linear complementarity problems. A necessary and sufficient condition is also derived to ensure the same solution basis for any parametric input of the vertical block P-matrix. Based on these, an algorithm is proposed and the solution of the parametric vertical block linear complementarity problem is obtained. A numerical example is presented to illustrate the use of the method.
引用
收藏
页码:325 / 332
页数:8
相关论文
共 50 条
  • [21] An algorithm for the fast solution of symmetric linear complementarity problems
    Morales, Jose Luis
    Nocedal, Jorge
    Smelyanskiy, Mikhail
    NUMERISCHE MATHEMATIK, 2008, 111 (02) : 251 - 266
  • [22] A representation of the solution set of a class of linear complementarity problems
    Huynh The Phung
    OPTIMIZATION, 2016, 65 (02) : 289 - 298
  • [23] An algorithm for the fast solution of symmetric linear complementarity problems
    José Luis Morales
    Jorge Nocedal
    Mikhail Smelyanskiy
    Numerische Mathematik, 2008, 111 : 251 - 266
  • [24] Linear complementarity as a general solution method to combinatorial problems
    Di Giacomo, Laura
    Patrizi, Giacomo
    Argento, Emanuele
    INFORMS JOURNAL ON COMPUTING, 2007, 19 (01) : 73 - 79
  • [25] A smoothing Newton method for extended vertical linear complementarity problems
    Qi, HD
    Liao, LZ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 21 (01) : 45 - 66
  • [26] Robust solution of monotone stochastic linear complementarity problems
    Chen, Xiaojun
    Zhang, Chao
    Fukushima, Masao
    MATHEMATICAL PROGRAMMING, 2009, 117 (1-2) : 51 - 80
  • [27] Robust solution of monotone stochastic linear complementarity problems
    Xiaojun Chen
    Chao Zhang
    Masao Fukushima
    Mathematical Programming, 2009, 117 : 51 - 80
  • [28] Remarks on the numerical solution of certain linear complementarity problems
    Benzi, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 83 (01) : 137 - 143
  • [29] BOUNDS FOR THE SOLUTION SET OF LINEAR COMPLEMENTARITY-PROBLEMS
    PARDALOS, PM
    ROSEN, JB
    DISCRETE APPLIED MATHEMATICS, 1987, 17 (03) : 255 - 261
  • [30] Extended vertical tensor complementarity problems with finite solution sets
    Li, Xue-liu
    Jiang, Yi-rong
    Yang, Yuning
    Tang, Guo-ji
    JOURNAL OF GLOBAL OPTIMIZATION, 2025,