Electrochemical Analysis the influence of Propargyl Methanesulfonate as Electrolyte Additive for Spinel LTO Interface Layer

被引:33
|
作者
Wang, Renheng [1 ,3 ]
Wang, Zhixing [2 ]
Li, Xinhai [2 ]
Zhang, Han [1 ]
机构
[1] Shenzhen Univ, Coll Optoelect Engn, Minist Educ & Guangdong Prov, Key Lab Optoelect Devices & Syst, Shenzhen 518060, Peoples R China
[2] Cent S Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Non-aqueous electrolyte; Spinel lithium titanate; Solid electrolyte interphase layer; Elevated temperature property; Propargyl methanesulfonate; P-TOLUENESULFONYL ISOCYANATE; LITHIUM-ION BATTERIES; RATE ANODE; LI4TI5O12; PERFORMANCE; CELLS; CONDUCTIVITY; SPECTROSCOPY; REACTIVITY; CATHODE;
D O I
10.1016/j.electacta.2017.04.125
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Propargyl methanesulfonate (PMS) is chosen as an electrolyte additive to study the interfacial performance between the electrolyte and spinel lithium titanate (Li4Ti5O12, LTO) electrode. The result displays that PMS can improve cyclability of Li/LTO cell. Very interestingly, a solid electrolyte interface (SEI) film is formed above 1.0 V in the voltage range of 3.0-0 V. The observations are explained in terms of PMS include triple-bonded compounds and SO3. The triple-bonded compounds were able to produce a characteristic SEI with dense and low impedance, which can effectively suppress the decomposition of electrolyte, HF generation and LiF formation upon cycling. The S = O groups may acts as the weak base site to hinder the reactivity of PF5. Accordingly, the incorporation of PMS into the electrolyte can remarkably enhance the cyclic performance of the Li/LTO cell. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:208 / 219
页数:12
相关论文
共 50 条
  • [41] Electrochemical analysis of electrolyte additive effect on ionic diffusion for high-performance lithium ion battery
    Hamidah, Nur Laila
    Nugroho, Gunawan
    Wang, Fu Ming
    IONICS, 2016, 22 (01) : 33 - 41
  • [42] Electrochemical analysis of electrolyte additive effect on ionic diffusion for high-performance lithium ion battery
    Nur Laila Hamidah
    Gunawan Nugroho
    Fu Ming Wang
    Ionics, 2016, 22 : 33 - 41
  • [43] Statistical Analysis of Solid Electrolyte Interface Formation: Correlation of Gas Composition, Electrochemical Data and Performance
    Klick, Sebastian
    Graff, Karl Martin
    Stahl, Gereon
    Figgemeier, Egbert
    Sauer, Dirk Uwe
    BATTERIES & SUPERCAPS, 2024, 7 (12)
  • [44] Statistical Analysis of Solid Electrolyte Interface Formation: Correlation of Gas Composition, Electrochemical Data and Performance
    Klick, Sebastian
    Graff, Karl Martin
    Stahl, Gereon
    Figgemeier, Egbert
    Sauer, Dirk Uwe
    BATTERIES & SUPERCAPS, 2024,
  • [45] Statistical Analysis of Solid Electrolyte Interface Formation: Correlation of Gas Composition, Electrochemical Data and Performance
    Klick, Sebastian
    Graff, Karl Martin
    Stahl, Gereon
    Figgemeier, Egbert
    Sauer, Dirk Uwe
    Batteries and Supercaps, 2024, 7 (12):
  • [46] Dual Role of Bis(borate) Additive in Electrode/Electrolyte Interface Layer Construction for High-Voltage NCM 523 Cathode
    Xiao, Yiyao
    Shi, Xiaotang
    Zheng, Tianle
    Yue, Ye
    Shi, Siqi
    Cheng, Ya-Jun
    Xia, Yonggao
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (09) : 4817 - 4824
  • [47] On-off ratio improvement in organic electrochemical transistors from addition of a PMMA layer at the electrolyte dielectric/semiconductor interface
    de Moura, Elton A.
    Luginieski, Marcos
    Serbena, Jose P. M.
    Seidel, Keli F.
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (15)
  • [48] Evolution of the Si electrode/electrolyte interface in lithium batteries characterized by XPS and AFM techniques: The influence of vinylene carbonate additive
    Martin, L.
    Martinez, H.
    Ulldemolins, M.
    Pecquenard, B.
    Le Cras, F.
    SOLID STATE IONICS, 2012, 215 : 36 - 44
  • [49] The electrochemical double layer at the graphene/aqueous electrolyte interface: what we can learn from simulations, experiments, and theory
    Elliott, Joshua D.
    Papaderakis, Athanasios A.
    Dryfe, Robert A. W.
    Carbone, Paola
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (41) : 15225 - 15262
  • [50] Building Ab Initio Interface Pourbaix diagrams to Investigate Electrolyte Stability in the Electrochemical Double Layer: Application to Magnesium Batteries
    Lautar, Anja Kopac
    Bitenc, Jan
    Dominko, Robert
    Filhol, Jean-Sebastien
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (07) : 8263 - 8273