Maximally connected and super arc-connected Bi-Cayley digraphs

被引:0
|
作者
Liu, Thomas Y. H. [1 ]
Meng, J. X. [2 ]
机构
[1] Nankai Univ, Ctr Combinator, LPMC TJKLC, Tianjin 300071, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
Bi-Cayley digraph; atom; lambda-atom; lambda-superatom; ABELIAN-GROUPS; GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X = (V, E) he a digraph. X is maximally connected, if kappa(X) = delta(X). X is maximally arc-connected, if lambda(X) = delta(X). And X is super arc-connected, if every minimum arc-cut of X is either the set of inarcs of some vertex or the set of outarcs of some vertex. In this paper, we prove that the strongly connected Bi-Cayley digraphs are maximally connected and maximally arc-connected, and the most of strongly connected Bi-Cayley digraphs are super arc-connected.
引用
收藏
页码:21 / 31
页数:11
相关论文
共 50 条
  • [21] ON SUPER-EDGE-CONNECTED DIGRAPHS AND BIPARTITE DIGRAPHS
    FIOL, MA
    JOURNAL OF GRAPH THEORY, 1992, 16 (06) : 545 - 555
  • [22] Double-super-connected digraphs
    Liu, Juan
    Meng, Jixiang
    Zhang, Zhao
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (09) : 1012 - 1016
  • [23] Maximally local-edge-connected graphs and digraphs
    Hellwig, A
    Volkmann, L
    ARS COMBINATORIA, 2004, 72 : 295 - 306
  • [24] Sufficient Conditions for Graphs to Be k-Connected, Maximally Connected, and Super-Connected
    Hong, Zhen-Mu
    Xia, Zheng-Jiang
    Chen, Fuyuan
    Volkmann, Lutz
    COMPLEXITY, 2021, 2021
  • [25] Cubic s-arc-transitive bi-Cayley graphs
    Ju, Ran
    Li, Jing Jian
    Gao, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 498
  • [26] Coloring Intersection Graphs of Arc-Connected Sets in the Plane
    Michał Lasoń
    Piotr Micek
    Arkadiusz Pawlik
    Bartosz Walczak
    Discrete & Computational Geometry, 2014, 52 : 399 - 415
  • [27] Bi-primitive 2-arc-transitive bi-Cayley graphs
    Li, Jing Jian
    Zhang, Xiao Qian
    Zhou, Jin-Xin
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (03) : 711 - 734
  • [28] Bi-primitive 2-arc-transitive bi-Cayley graphs
    Jing Jian Li
    Xiao Qian Zhang
    Jin-Xin Zhou
    Journal of Algebraic Combinatorics, 2024, 59 : 711 - 734
  • [29] Neighborhood conditions for graphs and digraphs to be maximally edge-connected
    Hellwig, Angelika
    Volkmann, Lutz
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 33 : 265 - 277
  • [30] Super-Mixed-Connected Line Digraphs
    Li, Rui
    Zhang, Zhao
    ARS COMBINATORIA, 2011, 100 : 493 - 499