STABLE SELF-SIMILAR BLOW-UP FOR A FAMILY OF NONLOCAL TRANSPORT EQUATIONS

被引:13
|
作者
Elgindi, Tarek M. [1 ]
Ghoul, Tej-Eddine [2 ]
Masmoudi, Nader [2 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] New York Univ Abu Dhabi, Abu Dhabi, U Arab Emirates
来源
ANALYSIS & PDE | 2021年 / 14卷 / 03期
关键词
singularity; Euler equation; 1-dimensional models; STABILITY; PROFILE; MODEL;
D O I
10.2140/apde.2021.14.891
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a family of nonlocal problems that model the effects of transport and vortex stretching in the incompressible Euler equations. Using modulation techniques, we establish stable self-similar blow-up near a family of known self-similar blow-up solutions.
引用
收藏
页码:891 / 908
页数:18
相关论文
共 50 条
  • [31] Multibump, blow-up, self-similar solutions of the complex Ginzburg-Landau equation
    Budd, CJ
    Rottschäfer, V
    Williams, JF
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (03): : 649 - 678
  • [32] Anomalous exponents of self-similar blow-up solutions to an aggregation equation in odd dimensions
    Huang, Y.
    Witelski, T. P.
    Bertozzi, A. L.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2317 - 2321
  • [33] MATCHED ASYMPTOTIC ANALYSIS OF SELF-SIMILAR BLOW-UP PROFILES OF THE THIN FILM EQUATION
    Dallaston, Michael C.
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2019, 72 (02): : 179 - 195
  • [34] On Stable Self-Similar Blow up for Equivariant Wave Maps: The Linearized Problem
    Roland Donninger
    Birgit Schörkhuber
    Peter C. Aichelburg
    Annales Henri Poincaré, 2012, 13 : 103 - 144
  • [35] On the stability of self-similar blow-up for C1,α solutions to the incompressible Euler equations on R3
    Elgindi, Tarek M.
    Ghoul, Tej-Eddine
    Masmoudi, Nader
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2021, 9 (04) : 1035 - 1075
  • [36] Asymptotic Self-Similar Blow-Up Profile for Three-Dimensional Axisymmetric Euler Equations Using Neural Networks
    Wang, Y.
    Lai, C. -y.
    Gomez-Serrano, J.
    Buckmaster, T.
    PHYSICAL REVIEW LETTERS, 2023, 130 (24)
  • [37] An inequality for Riesz transforms implying blow-up for some nonlinear and nonlocal transport equations
    Balodis, Pedro
    Cordoba, Antonio
    ADVANCES IN MATHEMATICS, 2007, 214 (01) : 1 - 39
  • [38] Blow-up for the b-family of equations
    Cortez, Fernando
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (04) : 1333 - 1345
  • [39] EXISTENCE OF BLOW-UP SELF-SIMILAR SOLUTIONS FOR THE SUPERCRITICAL QUASILINEAR REACTION-DIFFUSION EQUATION
    Gabriel Iagar, Razvan
    Sanchez, Ariel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (05) : 1399 - 1433
  • [40] SELF-SIMILAR SOLUTIONS AND BLOW-UP PHENOMENA FOR A TWO-COMPONENT SHALLOW WATER SYSTEM
    Shouming Zhou
    Chunlai Mu
    Liangchen Wang
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (03) : 821 - 829