MULTI-BUMP BOUND STATE SOLUTIONS FOR THE QUASILINEAR SCHRODINGER EQUATION WITH CRITICAL FREQUENCY

被引:10
|
作者
Guo, Yuxia [1 ]
Tang, Zhongwei [2 ]
机构
[1] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Beijing 100875, Peoples R China
关键词
multi-bump bound states; quasilinear Schrodinger equation; Orlicz space; SEMICLASSICAL STATES; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; CRITICAL GROWTH; MULTIPLICITY;
D O I
10.2140/pjm.2014.270.49
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of single- and multi-bump solutions of quasilinear Schrodinger equations -Delta u + lambda V (x) u - 1/2(Delta vertical bar u vertical bar(2))u = vertical bar u vertical bar(p-2)u, the function V being a critical frequency in the sense that inf(x is an element of RN) V(x) = 0. We show that if the zero set of V has several isolated connected components Omega(1),..., Omega(k) such that the interior of Omega(i) is not empty and partial derivative Omega(i) is smooth, then for lambda > 0 large, there exists, for any nonempty subset J subset of {1, 2, ...., k}, a standing wave solution trapped in a neighborhood of boolean OR Omega(j.)
引用
收藏
页码:49 / 77
页数:29
相关论文
共 50 条
  • [31] Multi-bump solutions for a strongly indefinite semilinear Schrodinger equation without symmetry or convexity assumptions
    Chen, Shaowei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (10) : 3067 - 3102
  • [32] Multi-bump bound states for a nonlinear Schrodinger system with electromagnetic fields
    Fu, Shengmao
    Jiao, Yujuan
    Tang, Zhongwei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 404 (02) : 239 - 259
  • [33] Multi-bump solutions for a class of quasilinear problems involving variable exponents
    Claudianor O. Alves
    Marcelo C. Ferreira
    Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 1563 - 1593
  • [34] EXISTENCE OF MULTI-BUMP SOLUTIONS FOR A NONLINEAR KIRCHHOFF EQUATION
    Chen, Yongpeng
    Yang, Zhipeng
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (02): : 233 - 248
  • [35] Multi-bump Solutions for a Choquard Equation with Nonsymmetric Potential
    Gao, Fashun
    Yang, Minbo
    Zheng, Yu
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (06)
  • [36] Multi-bump solutions for a class of quasilinear problems involving variable exponents
    Alves, Claudianor O.
    Ferreira, Marcelo C.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (06) : 1563 - 1593
  • [37] Existence of multi-bump solutions for the fractional Schrodinger-Poisson system
    Liu, Weiming
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (09)
  • [38] Existence of multi-bump solutions for a semilinear Schrodinger-Poisson system
    Wang, Jun
    Xu, Junxiang
    Zhang, Fubao
    Chen, Xumei
    NONLINEARITY, 2013, 26 (05) : 1377 - 1399
  • [39] Asymptotical behavior of ground state solutions for critical quasilinear Schrodinger equation
    Chen, Yongpeng
    Guo, Yuxia
    Tang, Zhongwei
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (01) : 21 - 46
  • [40] Geometric theory for multi-bump, self-similar, blowup solutions of the cubic nonlinear Schrodinger equation
    Rottschäfer, V
    Kaper, TJ
    NONLINEARITY, 2003, 16 (03) : 929 - 961