Nonstoichiometry-Induced Enhancement of Electrochemical Capacitance in Anodic TiO2 Nanotubes with Controlled Pore Diameter

被引:30
|
作者
Anitha, V. C. [1 ]
Banerjee, Arghya Narayan [1 ]
Dillip, G. R. [1 ]
Joo, Sang Woo [1 ]
Min, Bong Ki [2 ]
机构
[1] Yeungnam Univ, Sch Mech Engn, Gyongsan 712749, South Korea
[2] Yeungnam Univ, Ctr Res Facil, Gyongsan 712749, South Korea
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2016年 / 120卷 / 18期
基金
新加坡国家研究基金会;
关键词
DOUBLE-LAYER; ENERGY-STORAGE; PHASE-TRANSFORMATION; RUTILE TRANSFORMATION; CARBON NANOTUBE; IONIC LIQUIDS; ANATASE; ARRAYS; FABRICATION; ELECTRODE;
D O I
10.1021/acs.jpcc.6b01171
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the fabrication of self-organized titania (TiO2) nanotubes (TNTs) with controlled pore diameters (140-20 nm) by anodization for the application of electrochemical capacitor electrodes. The areal capacitances obtained for 140 nm TNTs as 0.23/0.13 mF cm(-2) at a scan rate of 1/5 mV s(-1) and it is enhanced to 5.5/2.9 mF cm(-2) (at the same scan rates) by controlling the pore diameter to 20 nm. In this study, role of pore diameter in the capacitance behavior of TNTs is explained on the basis of effective surface area and presence of oxygen vacancies/titanium interstitials. With a decrease in the pore diameter, the surface area-to-volume ratio (and hence, active surface sites) increases, which leads to greater dissociation of Ti4+ into Ti3+ under high temperature annealing and thus brings more nonstoichiometric defects like Ti3+ interstitials and oxygen deficiency within the lower dimensional TNTs. This manifests higher charge conductivity and greater electrochemical performance of TNTs with lower diameters. The simplicity of anodization method and the excellent electrochemical properties make these vertical TNTs as an alternative candidate for use in energy storage applications.
引用
收藏
页码:9569 / 9580
页数:12
相关论文
共 50 条
  • [21] From anodic TiO2 nanotubes to hexagonally ordered TiO2 nanocolumns
    Ruff, T.
    Hahn, R.
    Schmuki, P.
    APPLIED SURFACE SCIENCE, 2011, 257 (19) : 8177 - 8181
  • [22] Growth of anodic TiO2 nanotubes in mixed electrolytes and novel method to extend nanotube diameter
    Zhang, Yulian
    Yu, Dongliang
    Gao, Mingqi
    Li, Dongdong
    Song, Ye
    Jin, Rong
    Ma, Weihua
    Zhu, Xufei
    ELECTROCHIMICA ACTA, 2015, 160 : 33 - 42
  • [23] Light induced catalytic and electrochemical enhancement in metal nanoparticles crafted one dimensional TiO2 nanotubes
    Bamola, Priyanka
    Rawat, Saurabh
    Dwivedi, Charu
    Sharma, Himani
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 5338 - 5341
  • [24] Modeling the Growth Kinetics of Anodic TiO2 Nanotubes
    Apolinario, A.
    Quiterio, P.
    Sousa, C. T.
    Ventura, J.
    Sousa, J. B.
    Andrade, L.
    Mendes, A. M.
    Araujo, J. P.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (05): : 845 - 851
  • [25] Dye-sensitized anodic TiO2 nanotubes
    Macák, JM
    Tsuchiya, H
    Ghicov, A
    Schmuki, P
    ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (11) : 1133 - 1137
  • [26] Excited state properties of anodic TiO2 nanotubes
    Kahnt, Axel
    Oelsner, Christian
    Werner, Fabian
    Guldi, Dirk M.
    Albu, Sergiu P.
    Kirchgeorg, Robin
    Lee, Kiyoung
    Schmuki, Patrik
    APPLIED PHYSICS LETTERS, 2013, 102 (23)
  • [27] Smooth anodic TiO2 nanotubes:: annealing and structure
    Macak, Jan M.
    Aldabergerova, Saule
    Ghicov, Andrei
    Schmuki, Patrik
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2006, 203 (10): : R67 - R69
  • [28] Anodic Growth and Biomedical Applications of TiO2 Nanotubes
    Cipriano, Aaron F.
    Miller, Christopher
    Liu, Huinan
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2014, 10 (10) : 2977 - 3003
  • [29] Diameter-sensitive biocompatibility of anodic TiO2 nanotubes treated with supercritical CO2 fluid
    Lan, Ming-Ying
    Liu, Chia-Pei
    Huang, Her-Hsiung
    Chang, Jeng-Kuei
    Lee, Sheng-Wei
    NANOSCALE RESEARCH LETTERS, 2013, 8 : 1 - 8
  • [30] Diameter-sensitive biocompatibility of anodic TiO2 nanotubes treated with supercritical CO2 fluid
    Ming-Ying Lan
    Chia-Pei Liu
    Her-Hsiung Huang
    Jeng-Kuei Chang
    Sheng-Wei Lee
    Nanoscale Research Letters, 8