Monte Carlo study of the sphere packing problem

被引:10
|
作者
Li, SP [1 ]
Ng, KL
机构
[1] Acad Sinica, Inst Phys, Taipei 115, Taiwan
[2] Ling Tung Coll, Dept Informat Management, Taichung 408, Nantun, Taiwan
关键词
sphere packing problem; gamma knife; radiosurgery;
D O I
10.1016/S0378-4371(02)01798-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We employ the Monte Carlo method to study a constrained optimization problem, that is packing spheres with unequal radii into a 3-D bounded region, Selection of the best fit solution is based on using the Boltzmann factor, e(-DeltaET) to determine the transition probability, which allows us to search for the global optimal solution. We determined the least numbers of packed spheres that will occupy the largest volume. The optimal occupied volume found is around 44% of a bounded region volume, which is obtained within a relative short computing time. This suggests that our result could be able to give a good starting point for the radiosurgery treatment plan. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:359 / 363
页数:5
相关论文
共 50 条
  • [21] On packing spheres into containers -: About Keplers finite sphere packing problem
    Schurmann, Achill
    DOCUMENTA MATHEMATICA, 2006, 11 : 393 - 406
  • [22] The Kitchen Sink Problem: Monte Carlo study of stochastic frontiers
    Belin, Matej
    33RD INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2015), 2015, : 31 - 36
  • [24] Monte Carlo study of Schwinger model without the sign problem
    Hiroki Ohata
    Journal of High Energy Physics, 2023
  • [25] MONTE-CARLO STUDY OF THE SCANNING PROBLEM WITH A VISIBILITY DISTRIBUTION
    COCHRANE, J
    GIERALTOWSKI, GF
    HYMAN, LG
    NUCLEAR INSTRUMENTS & METHODS, 1979, 160 (03): : 503 - 510
  • [26] A MONTE-CARLO STUDY OF A COMPLEX PROBLEM IN NATURAL SELECTION
    LEWONTIN, RC
    BIOMETRICS, 1960, 16 (01) : 135 - 135
  • [27] SPHERE PACKINGS WITH 3 CONTACTS PER SPHERE AND THE PROBLEM OF THE LEAST DENSE SPHERE PACKING
    KOCH, E
    FISCHER, W
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1995, 210 (06): : 407 - 414
  • [28] Parallel Monte Carlo sampling scheme for sphere and hemisphere
    Dimov, I. T.
    Penzov, A. A.
    Stoilova, S. S.
    NUMERICAL METHODS AND APPLICATIONS, 2007, 4310 : 148 - 155
  • [29] Monte Carlo simulations of confined hard sphere fluids
    Schroeder-Turk, G. E.
    Kuczera, S.
    Hoerndlein, D.
    Krach, F.
    Hiester, T.
    Mecke, K.
    PROCEEDINGS OF THE 22TH WORKSHOP ON COMPUTER SIMULATION STUDIES IN CONDENSED MATTER PHYSICS (CSP 2009), 2010, 3 (03): : 1493 - 1497
  • [30] Monte Carlo approximations of the Neumann problem
    Maire, Sylvain
    Tanre, Etienne
    MONTE CARLO METHODS AND APPLICATIONS, 2013, 19 (03): : 201 - 236