Effect of particle size distribution on the structure, hyperfine, and magnetic properties of Ni0.5Zn0.5Fe2O4 nanopowders

被引:15
|
作者
Bhattacharjee, Kaustav [1 ]
Pati, Satya P. [2 ]
Das, G. C. [1 ]
Das, D. [2 ]
Chattopadhyay, K. K. [3 ]
机构
[1] Jadavpur Univ, Dept Met & Mat Engn, Kolkata 700032, India
[2] Kolkata Ctr, UGC DAE Consortium Sci Res, Kolkata 700098, India
[3] Jadavpur Univ, Dept Phys, Thin Film & Nanosci Lab, Kolkata 700032, India
关键词
ELECTRON-PARAMAGNETIC-RESONANCE; X-RAY-DIFFRACTION; NI-ZN-FERRITE; CATION DISTRIBUTION; TEMPERATURE; REFINEMENT; ANISOTROPY; MOSSBAUER; SPECTRA;
D O I
10.1063/1.4904518
中图分类号
O59 [应用物理学];
学科分类号
摘要
Ni0.5Zn0.5Fe2O4 nano powders were synthesized by an auto combustion method and then heat treated at different temperatures in air for a fixed time. As a consequence, a distribution in particle size and strain was incorporated within the specimens, as estimated from the Rietveld refinement analysis of the powder x-ray diffraction data. The changes in the microstructure and crystal structure parameters were carefully extracted through the refinement analysis. Thermal annealing causes increment in the dispersion and mean of the size distribution. Reallocation of cations in the lattice sites occur as a consequence of the heat treatment which was manifested in their altered unit cell length (a), r.m.s. strain (<epsilon(2)>(1/2)), oxygen positional parameter (u), metal-oxygen bond lengths (R-OA and R-OB), and the band positions (nu(1) and nu(2)) in the vibrational spectroscopy. We also investigate the hyperfine and magnetic properties of the samples using different instrumental techniques (with different operating time scales) like Mossbauer spectroscopy, electron paramagnetic resonance spectroscopy, and superconducting quantum interference device magnetometry. Results show that the effect of particle size distribution was manifested in their hyperfine field distribution profile, paramagnetic resonance spectra, and magnetic anisotropy energy distribution profile. Co-existence of superparamagnetic and ferrimagnetic phase was recorded at room temperature in the samples when annealed at lower temperature. However, with increase in annealing temperature, the nature of the size distribution changes and ferrimagnetic ordering predominates for the larger size nanoparticles. Thus, the effect of particle size distribution on the structural, hyperfine, and magnetic properties of various Ni0.5Zn0.5Fe2O4 nanoparticles was investigated herein which hitherto has not been discussed in the literature. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Enhancement of the magnetic and optical properties of Ni0.5Zn0.5Fe2O4 nanoparticles by ruthenium doping
    Basma, H.
    Al Boukhari, J.
    Abd Al Nabi, M.
    Aridi, A.
    Hassan, R. Sayed
    Naoufal, D.
    Roumie, M.
    Awad, R.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (05):
  • [22] Synthesis and temperature dependent magnetic properties of nanocrystalline Ni0.5Zn0.5Fe2O4 ferrites
    Atif, Muhammad
    MATERIALS RESEARCH EXPRESS, 2019, 6 (07):
  • [23] Microstructural and magnetic characterization of Ni0.5Zn0.5Fe2O4 ferrite nanoparticles
    Bajorek, A.
    Berger, C.
    Dulski, M.
    Lopadczak, P.
    Zubko, M.
    Prusik, K.
    Wojtyniak, M.
    Chrobak, A.
    Grasset, F.
    Randrianantoandro, N.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2019, 129 : 1 - 21
  • [24] Structural, magnetic and magnetocaloric study of Ni0.5Zn0.5Fe2O4 spinel
    Rabi, B.
    Essoumhi, A.
    Sajieddine, M.
    Greneche, J. M.
    Hlil, E. K.
    Razouk, A.
    Valente, M. A.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2020, 126 (03):
  • [25] Enhancement of the magnetic and optical properties of Ni0.5Zn0.5Fe2O4 nanoparticles by ruthenium doping
    H. Basma
    J. Al Boukhari
    M. Abd Al Nabi
    A. Aridi
    R. Sayed Hassan
    D. Naoufal
    M. Roumie
    R. Awad
    Applied Physics A, 2022, 128
  • [26] Surface magnetic disorder in nanostructured Ni0.5Zn0.5Fe2O4 particles
    Nedkov, I.
    Vandenberghe, R. E.
    Zaleski, A.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (18) : 2732 - 2736
  • [27] Solvothermal Synthesis and Magnetic Properties of Monodisperse Ni0.5Zn0.5Fe2O4 Hollow Nanospheres
    Zhang, Min
    Liu, Qiangchun
    HIGH TEMPERATURE MATERIALS AND PROCESSES, 2019, 38 (2019) : 76 - 83
  • [28] Effect of cobalt substitution on the structure, electrical, and magnetic properties of nanorcrystalline Ni0.5Zn0.5Fe2O4 prepared by the polyol process
    Huili, Hichem
    Grindi, Bilel
    Viau, Guillaume
    Ben Tahar, Lotfi
    CERAMICS INTERNATIONAL, 2014, 40 (10) : 16235 - 16244
  • [29] Sintering effect on structural, magnetic and optical properties of Ni0.5Zn0.5Fe2O4 ferrite nano particles
    Kannan, Y. B.
    Saravanan, R.
    Srinivasan, N.
    Ismail, I.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 423 : 217 - 225
  • [30] Dielectric relaxation of Ni0.5Zn0.5Fe2O4 ceramics
    Chen, D. G.
    Tang, X. G.
    Tong, J. J.
    Wu, J. B.
    Jiang, Y. P.
    Liu, Q. X.
    SOLID STATE COMMUNICATIONS, 2011, 151 (14-15) : 1042 - 1044