The detection and estimation of long memory in stochastic volatility

被引:298
|
作者
Breidt, FJ
Crato, N
de Lima, P [1 ]
机构
[1] Johns Hopkins Univ, Dept Econ, Baltimore, MD 21218 USA
[2] Iowa State Univ Sci & Technol, Dept Stat, Ames, IA 50011 USA
[3] New Jersey Inst Technol, Dept Math, Newark, NJ 07102 USA
关键词
fractional ARMA; EGARCH; spectral likelihood estimators;
D O I
10.1016/S0304-4076(97)00072-9
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a new time series representation of persistence in conditional variance called a long memory stochastic volatility (LMSV) model. The LMSV model is constructed by incorporating an ARFIMA process in a standard stochastic volatility scheme. Strongly consistent estimators of the parameters of the model are obtained by maximizing the spectral approximation to the Gaussian likelihood. The finite sample properties of the spectral likelihood estimator are analyzed by means of a Monte Carlo study. An empirical example with a long time series of stock prices demonstrates the superiority of the LMSV model over existing (short-memory) volatility models. (C) 1998 Elsevier Science S.A.
引用
收藏
页码:325 / 348
页数:24
相关论文
共 50 条
  • [1] The detection and estimation of long memory in stochastic volatility
    Breidt, F. Jay
    Crato, Nuno
    De, Lima, Pedro
    Journal of Econometrics, 83 (1-2): : 325 - 348
  • [2] Estimation and forecasting of long memory stochastic volatility models
    Abbara, Omar
    Zevallos, Mauricio
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2023, 27 (01): : 1 - 24
  • [3] Estimation and pricing under long-memory stochastic volatility
    Chronopoulou A.
    Viens F.G.
    Annals of Finance, 2012, 8 (2-3) : 379 - 403
  • [4] Parameter Estimation for Long-Memory Stochastic Volatility at Discrete Observation
    Wang, Xiaohui
    Zhang, Weiguo
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [5] Bias-reduced estimation of long-memory stochastic volatility
    Frederiksen, Per
    Nielsen, Morten Orregaard
    JOURNAL OF FINANCIAL ECONOMETRICS, 2008, 6 (04) : 496 - 512
  • [6] Estimation of the long memory parameter in stochastic volatility models by quadratic variations
    Florescu, Ionut
    Tudor, Ciprian A.
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2011, 19 (02) : 197 - 216
  • [7] Bayesian estimation of Gegenbauer long memory processes with stochastic volatility: methods and applications
    Phillip, Andrew
    Chan, Jennifer S. K.
    Peiris, Shelton
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2018, 22 (03):
  • [8] A multivariate long memory stochastic volatility model
    So, MKP
    Kwok, SWY
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 362 (02) : 450 - 464
  • [9] Realized stochastic volatility with leverage and long memory
    Shirota, Shinichiro
    Hizu, Takayuki
    Omori, Yasuhiro
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 76 : 618 - 641
  • [10] Seasonal Long-memory Stochastic Volatility
    Gonzaga, Alex C.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2410 - 2413