Bayesian estimation of Gegenbauer long memory processes with stochastic volatility: methods and applications

被引:3
|
作者
Phillip, Andrew [1 ]
Chan, Jennifer S. K. [1 ]
Peiris, Shelton [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW, Australia
来源
关键词
Gegenbauer; long memory; MCMC; stochastic volatility; time series; REGRESSION-MODELS; ARFIMA MODELS; RUN BEHAVIOR; INFLATION; INFERENCE; LEVERAGE;
D O I
10.1515/snde-2015-0110
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper discusses a time series model which has generalized long memory in the mean process with stochastic volatility errors and develops a new Bayesian posterior simulator that couples advanced posterior maximisation techniques, as well as traditional latent stochastic volatility estimation procedures. Details are provided on the estimation process, data simulation, and out of sample performance measures. We conduct several rigorous simulation studies and verify our results for in and out of sample behaviour. We further compare the goodness of fit of the generalized process to the standard long memory model by considering two empirical studies on the US Consumer Price Index (CPI) and the US equity risk premium (ERP).
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Realized stochastic volatility models with generalized Gegenbauer long memory
    Asai, Manabu
    McAleer, Michael
    Peiris, Shelton
    ECONOMETRICS AND STATISTICS, 2020, 16 : 42 - 54
  • [2] Bayesian estimation of Gegenbauer processes
    Hunt, R.
    Peiris, S.
    Weber, N.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (09) : 1357 - 1377
  • [3] Long memory stochastic volatility: A Bayesian approach
    Chan, NH
    Petris, G
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (5-6) : 1367 - 1378
  • [4] The detection and estimation of long memory in stochastic volatility
    Breidt, F. Jay
    Crato, Nuno
    De, Lima, Pedro
    Journal of Econometrics, 83 (1-2): : 325 - 348
  • [5] Bayesian Inference for Long Memory Stochastic Volatility Models
    Chaim, Pedro
    Laurini, Marcio Poletti
    ECONOMETRICS, 2024, 12 (04)
  • [6] The detection and estimation of long memory in stochastic volatility
    Breidt, FJ
    Crato, N
    de Lima, P
    JOURNAL OF ECONOMETRICS, 1998, 83 (1-2) : 325 - 348
  • [7] Bayesian Estimation of Multivariate Stochastic Volatility Modeled by Wishart Processes
    Rinnergschwentner, Wolfgang
    Tappeiner, Gottfried
    Walde, Janette
    AEBD '09: PROCEEDINGS OF THE WORLD MULTICONFERENCE ON APPLIED ECONOMICS, BUSINESS AND DEVELOPMENT, 2009, : 169 - 174
  • [8] Estimation and forecasting of long memory stochastic volatility models
    Abbara, Omar
    Zevallos, Mauricio
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2023, 27 (01): : 1 - 24
  • [9] Estimation methods for stationary Gegenbauer processes
    Richard Hunt
    Shelton Peiris
    Neville Weber
    Statistical Papers, 2022, 63 : 1707 - 1741
  • [10] On generalized bivariate student-t Gegenbauer long memory stochastic volatility models with leverage: Bayesian forecasting of cryptocurrencies with a focus on Bitcoin
    Phillip, Andrew
    Chan, Jennifer
    Peiris, Shelton
    ECONOMETRICS AND STATISTICS, 2020, 16 : 69 - 90