Experimental and LES investigation of premixed methane/air flame propagating in a chamber for three obstacle BR configurations

被引:32
|
作者
Chen, Peng [1 ,2 ]
Li, Yanchao [2 ]
Huang, Fujun [2 ]
Guo, Shilong [2 ]
Liu, Xuanya [3 ]
机构
[1] China Univ Min & Technol Beijing, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China
[2] China Univ Min & Technol Beijing, Fac Resources & Safety Engn, Beijing 100083, Peoples R China
[3] Tianjin Fire Res Inst MPS, Tianjin 300381, Peoples R China
基金
中国国家自然科学基金;
关键词
Blockage ratio; Flame-vortex mechanism; LES; FSD; Volute flame; Small recirculation zone; LARGE-EDDY SIMULATION; ACCELERATION;
D O I
10.1016/j.jlp.2016.02.020
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The paper aims at revealing the effect of blockage ratio (BR) on the flame acceleration process and the flame-vortex mechanism in an obstructed chamber based essentially on the experimental and numerical methods. In the experiments, high-speed video photography and pressure transducer are used to study the flame shape changes and pressure dynamics. In the numerical simulations, large eddy simulation (LES) with the flame surface density (FSD) model is applied to investigate the interaction between the moving flame and vortices induced by obstacle. The results demonstrate that the flame propagation process can be divided into four stages, namely spherical flame, finger-shaped flame, jet flame and volute flame for three obstacle BR configurations, and a small recirculation zone is observed above the obstacle only for BR = 0.5. The peak of flame tip speed and pressure growth rate increases with the blockage ratio. The generation and evolution of the vortex behind the obstacle can be attributed to the initial flame acceleration, while the subsequent flame deceleration is due to the flame-vortex interaction. Its addition, the transition from a "thin reaction zones" to a "broken reaction zones" is also observed in the simulation. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 54
页数:7
相关论文
共 50 条
  • [31] Premixed hydrogen-air flame front dynamics in the obstructed chamber by changing obstacle opening structure
    Gao, Yuke
    Li, Wan
    Liang, Bo
    Gao, Wei
    Li, Yanchao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 65 : 1 - 13
  • [32] Investigation of Influence of Solid Obstacle on Methane-Air Flame Propagation in Tube
    Guo Ziru
    Wang Quan
    Ding Yibin
    INTERNATIONAL MINING FORUM 2010: MINE SAFETY AND EFFICIENT EXPLOITATION FACING CHALLENGE OF THE 21ST CENTURY, 2010, : 63 - +
  • [33] Investigation of Radiative Heat Transfer and Three Thermal Radiation Models in a Turbulent Non-Premixed Methane/Air Flame
    Zeinivand, Hamed
    Bazdidi-Tehrani, Farzad
    HEAT TRANSFER RESEARCH, 2011, 42 (06) : 571 - 593
  • [34] Experimental investigation on flame stability and emissions of lean premixed methane-air combustion in a developed divergent porous burner
    Liu, Yang
    Deng, Yangbo
    Shi, Junrui
    Liu, Yongqi
    Wang, Xiaolong
    Ge, Bingquan
    Min, Zhenyu
    JOURNAL OF CLEANER PRODUCTION, 2023, 405
  • [35] Experimental study of premixed methane-air flame coupled with an external acoustic field
    Arefyev, K. Yu
    Krikunova, A. I.
    Panov, V. A.
    XXXIII INTERNATIONAL CONFERENCE ON EQUATIONS OF STATE FOR MATTER, 2019, 1147
  • [36] Experimental study on premixed flame propagation of hydrogen/methane/air deflagration in closed ducts
    Zheng, Kai
    Yu, Minggao
    Zheng, Ligang
    Wen, Xiaoping
    Chu, Tingxiang
    Wang, Liang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (08) : 5426 - 5438
  • [37] Experimental study on the flame behaviors of premixed methane/air mixture in horizontal rectangular ducts
    Chen, Dongliang
    Sun, Jinhua
    Chen, Sining
    Liu, Yi
    Chu, Guanquan
    27TH INTERNATIONAL CONGRESS ON HIGH SPEED PHOTOGRAPHY AND PHOTONICS, PRTS 1-3, 2007, 6279
  • [38] Experimental study of the effect of a cavity on propagation behavior of premixed methane-air flame
    Ma, Tianbao
    Wu, Deyao
    Li, Jian
    FUEL, 2023, 338
  • [39] Experimental and numerical study of laminar premixed dimethyl ether/methane-air flame
    Yu, Huibin
    Hu, Erjiang
    Cheng, Yu
    Zhang, Xinyi
    Huang, Zuohua
    FUEL, 2014, 136 : 37 - 45
  • [40] Analytical and experimental study of premixed methane-air flame propagation narrow channels
    Chao, C. Y. H.
    Hui, K. S.
    Kong, W.
    Cheng, P.
    Wang, J. H.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (7-8) : 1302 - 1313