Red-bond exponents of the critical and the tricritical Ising model in three dimensions -: art. no. 056132

被引:0
|
作者
Deng, YJ
Blöte, HWJ
机构
[1] Delft Univ Technol, Fac Sci Appl, NL-2600 GA Delft, Netherlands
[2] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 05期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using the Wolff and geometric cluster algorithms and finite-size scaling analysis, we investigate the critical Ising and the tricritical Blume-Capel models with nearest-neighbor interactions on the simple-cubic lattice. The sampling procedure involves the decomposition of the Ising configuration into geometric clusters, each of which consists of a set of nearest-neighboring spins of the same sign connected with bond probability p. These clusters include the well-known Kasteleyn-Fortuin clusters as a special case for p = 1 - exp(-2K), where K is the Ising spin-spin coupling. Along the critical line K=K-c, the size distribution of geometric clusters is investigated as a function of p. We observe that, unlike in the case of two-dimensional tricriticality, the percolation threshold in both models lies at p(c)=1 - exp(-2K(c)). Further, we determine the corresponding red-bond exponents as y(r)=0.757(2) and 0.501(5) for the critical Ising and the tricritical Blume-Capel models, respectively. On this basis, we conjecture y(r) = 1/2 for the latter model.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Exact insulating and conducting ground states of a periodic anderson model in three dimensions -: art. no. 186401
    Gulácsi, Z
    Vollhardt, D
    PHYSICAL REVIEW LETTERS, 2003, 91 (18)
  • [42] Monte Carlo study of the site-percolation model in two and three dimensions -: art. no. 016126
    Deng, YJ
    Blöte, HWJ
    PHYSICAL REVIEW E, 2005, 72 (01):
  • [43] Transient backbending behavior in the Ising model with fixed magnetization -: art. no. 026119
    Gulminelli, F
    Carmona, JM
    Chomaz, P
    Richert, J
    Jiménez, S
    Regnard, V
    PHYSICAL REVIEW E, 2003, 68 (02): : 1 - 026119
  • [44] Creep motion in a random-field Ising model -: art. no. 026113
    Roters, L
    Lübeck, S
    Usadel, KD
    PHYSICAL REVIEW E, 2001, 63 (02):
  • [45] Critical exponents in D dimensions for the Ising model, subsuming Zhang's proposals for D=3
    Klein, D. J.
    March, N. H.
    PHYSICS LETTERS A, 2008, 372 (30) : 5052 - 5053
  • [46] Cluster Monte Carlo simulation of the transverse Ising model -: art. no. 066110
    Blöte, HWJ
    Deng, YJ
    PHYSICAL REVIEW E, 2002, 66 (06): : 8
  • [47] Percolation in three-dimensional random field Ising magnets -: art. no. 144403
    Seppälä, ET
    Pulkkinen, AM
    Alava, MJ
    PHYSICAL REVIEW B, 2002, 66 (14)
  • [48] Critical and multicritical behavior of the ±J Ising model in two and three dimensions
    Hasenbusch, M.
    Toldin, F. Parisen
    Pelissetto, A.
    Vicari, E.
    HIGHLY FRUSTRATED MAGNETISM 2008 (HFM 2008), 2009, 145
  • [49] Topological gauging of N=16 supergravity in three dimensions -: art. no. 025009
    Nishino, H
    Rajpoot, S
    PHYSICAL REVIEW D, 2003, 67 (02)
  • [50] Plaquette expectation value and gluon condensate in three dimensions -: art. no. 013
    Hietanen, A
    Kajantie, K
    Laine, M
    Rummukainen, K
    Schröder, Y
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (01): : 275 - 285