INPUT UNCERTAINTY QUANTIFICATION FOR QUANTILES

被引:0
|
作者
Parmar, Drupad [1 ]
Morgan, Lucy E. [1 ]
Titman, Andrew C. [1 ]
Williams, Richard A. [1 ]
Sanchez, Susan M. [2 ]
机构
[1] Univ Lancaster, STORi Ctr Doctoral Training, Lancaster LA1 4YW, England
[2] Naval Postgraduate Sch, Dept Operat Res, Monterey, CA 93943 USA
来源
2022 WINTER SIMULATION CONFERENCE (WSC) | 2022年
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/WSC57314.2022.10015272
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Input models that drive stochastic simulations are often estimated from real-world samples of data. This leads to uncertainty in the input models that propagates through to the simulation outputs. Input uncertainty typically refers to the variance of the output performance measure due to the estimated input models. Many methods exist for quantifying input uncertainty when the performance measure is the sample mean of the simulation outputs, however quantiles that are frequently used to evaluate simulation output risk cannot be incorporated into this framework. Here we adapt two input uncertainty quantification techniques for when the performance measure is a quantile of the simulation outputs rather than the sample mean. We implement the methods on two examples and show that both methods accurately estimate an analytical approximation of the true value of input uncertainty.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 50 条
  • [21] Diversification limit of quantiles under dependence uncertainty
    Valeria Bignozzi
    Tiantian Mao
    Bin Wang
    Ruodu Wang
    Extremes, 2016, 19 : 143 - 170
  • [22] Optimal Input Excitation Design for Nonparametric Uncertainty Quantification of Multi-Input Multi-Output Systems
    Oveisi, Atta
    Anderson, Ashlee
    Nestorovic, Tamara
    Montazeri, Allahyar
    IFAC PAPERSONLINE, 2018, 51 (15): : 114 - 119
  • [23] Bayesian uncertainty quantification of perturbative QCD input to the neutron-star equation of state
    Gorda, Tyler
    Komoltsev, Oleg
    Kurkela, Aleksi
    Mazeliauskas, Aleksas
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (06)
  • [24] A parametric statistical inference measure for input-based uncertainty quantification in BEPU analysis
    Hosseini, Seyed Ali
    Shirani, Amir Saeed
    Akbari, Reza
    D'Auria, Francesco
    ANNALS OF NUCLEAR ENERGY, 2025, 214
  • [25] Quantification of Input Uncertainty Propagation Through Models of Aluminum Alloy Direct Chill Casting
    Kyle Fezi
    Matthew John M. Krane
    Metallurgical and Materials Transactions A, 2018, 49 : 4759 - 4770
  • [26] Effect of mesh refinement on the estimation of model input parameters using Inverse Uncertainty Quantification
    Abu Saleem, Rabie A.
    Kozlowski, Tomasz
    ANNALS OF NUCLEAR ENERGY, 2019, 132 : 271 - 276
  • [27] Quantification of Input Uncertainty Propagation Through Models of Aluminum Alloy Direct Chill Casting
    Fezi, Kyle
    Krane, Matthew John M.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (10): : 4759 - 4770
  • [28] Bayesian uncertainty quantification of perturbative QCD input to the neutron-star equation of state
    Tyler Gorda
    Oleg Komoltsev
    Aleksi Kurkela
    Aleksas Mazeliauskas
    Journal of High Energy Physics, 2023
  • [29] Uncertainty Quantification method for CFD applied to the turbulent mixing of two water layers - II: Deterministic Sampling for input uncertainty
    Rakhimov, A. Cutrono
    Visser, D. C.
    Komen, E. M. J.
    NUCLEAR ENGINEERING AND DESIGN, 2019, 348 : 146 - 158
  • [30] Estimation of upper quantiles under model and parameter uncertainty
    Modarres, R
    Nayak, TK
    Gastwirth, JL
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (04) : 529 - 554