Task Specific Image Enhancement for Improving the Accuracy of CNNs

被引:2
|
作者
Mitschke, Norbert [1 ]
Ji, Yunou [1 ]
Heizmann, Michael [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Ind Informat Technol, Hertzstr 16, Karlsruhe, Germany
来源
PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM) | 2021年
关键词
CNNs; Image Enhancement; Deep Learning; Pre-processing; Invariant Features; NEURAL-NETWORK;
D O I
10.5220/0010186301740181
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Choosing an appropriate pre-processing and image enhancement step for CNNs can have a positive effect on the performance. Pre-processing and image enhancement are in contrast to augmentation deterministically applied on every image of a data set and can be interpreted as a normalizing way to construct invariant features. In this paper we present a method that determines the optimal composition and strength of various image enhancement methods by a neural network with a new type of layer that learns the parameters of optimal image enhancement. We apply this procedure on different image classification data sets, which leads to an improvement of the information content of the images with respect to the specific task and thus also to an improvement of the resulting test accuracy. For example, we can reduce the classification error for our benchmark data sets clearly.
引用
收藏
页码:174 / 181
页数:8
相关论文
共 50 条
  • [31] Improving the border detection and image enhancement algorithms in Tableau
    de Oliveira, Daniel Marques
    Lins, Rafael Dueire
    IMAGE ANALYSIS AND RECOGNITION, PROCEEDINGS, 2008, 5112 : 1111 - 1121
  • [33] Task Decoupling Guided Low-Light Image Enhancement
    Niu Y.-Z.
    Chen M.-M.
    Li Y.-Z.
    Zhao T.-S.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (01): : 34 - 45
  • [34] Underwater image enhancement using multi-task fusion
    Liao, Kaibo
    Peng, Xi
    PLOS ONE, 2024, 19 (02):
  • [35] Effect of image enhancement on the search and detection task in the urban terrain
    Devitt, Nicole
    Moyer, Steve
    Young, Susan
    INFRARED IMAGING SYSTEMS: DESIGN, ANALYSIS, MODELING, AND TESTING XVII, 2006, 6207
  • [36] IMAGE COMPRESSION BASED ON TASK-SPECIFIC INFORMATION
    Pu, Lingling
    Marcellin, Michael W.
    Bilgin, Ali
    Ashok, Amit
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 4817 - 4821
  • [37] Training a Task-Specific Image Reconstruction Loss
    Mustafa, Aamir
    Mikhailiuk, Aliaksei
    Iliescu, Dan Andrei
    Babbar, Varun
    Mantiuk, Rafal K.
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 21 - 30
  • [38] A robust image enhancement technique for improving image visual quality in shadowed scenes
    Tao, L
    Asari, VK
    IMAGE AND VIDEO RETRIEVAL, PROCEEDINGS, 2005, 3568 : 395 - 404
  • [39] Fast Retraining of Approximate CNNs for High Accuracy
    Trommer, Elias
    Waschneck, Bernd
    Kumar, Akash
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2025, 44 (04) : 1224 - 1237
  • [40] Automatic Histopathology Image Analysis with CNNs
    Hou, Le
    Singh, Kunal
    Samaras, Dimitris
    Kure, Tahsin M.
    Gao, Yi
    Seidman, Roberta J.
    Saltz, Joel H.
    2016 NEW YORK SCIENTIFIC DATA SUMMIT (NYSDS), 2016,