PINN-FFHT: A physics-informed neural network for solving fluid flow and heat transfer problems without simulation data

被引:10
|
作者
Zhang, Qingyang [1 ]
Guo, Xiaowei [2 ,3 ]
Chen, Xinhai [1 ]
Xu, Chuanfu [2 ,3 ]
Liu, Jie [4 ]
机构
[1] Natl Univ Def Technol, Sci & Technol Parallel & Distributed Proc Lab, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, Inst Quantum Informat, Changsha 410073, Hunan, Peoples R China
[3] Natl Univ Def Technol, State Key Lab High Performance Comp, Changsha 410073, Hunan, Peoples R China
[4] Natl Univ Def Technol, Lab Software Engn Complex Syst, Changsha 410073, Hunan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Physics-informed neural networks (PINNs); partial differential equations; fluid flow; heat transfer; boundary conditions; PREDICTION; EQUATIONS; BOUNDARY;
D O I
10.1142/S0129183122501662
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In recent years, physics-informed neural networks (PINNs) have come to the foreground in many disciplines as a new way to solve partial differential equations. Compared with traditional discrete methods and data-driven surrogate models, PINNs can learn the solutions of partial differential equations without relying on tedious mesh generation and simulation data. In this paper, an original neural network structure PINN-FFHT based on PINNs is devised to solve the fluid flow and heat transfer problems. PINN-FFHT can simultaneously predict the flow field and take into consideration the influence of flow on the temperature field to solve the energy equation. A flexible and friendly boundary condition (BC) enforcement method and a dynamic strategy that can adaptively balance the loss term of velocity and that of temperature are proposed for training PINN-FFHT, serving to accelerate the convergence and improve the accuracy of predicted results. Three cases are predicted to validate the capabilities of the network, including the laminar flow with the Dirichlet BCs in heat transfer, respectively, under the Cartesian and the cylindrical coordinate systems, and the thermally fully developed flow with the Neumann BCs in heat transfer. Results show that PINN-FFHT is faster in convergence speed and higher in accuracy than traditional PINN methods.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] PHYSICS-INFORMED NEURAL NETWORK WITH NUMERICAL DIFFERENTIATION FOR MODELLING COMPLEX FLUID DYNAMIC PROBLEMS
    Ha, Dao My
    Pao-Hsiung, Chiu
    Cheng, Wong Jian
    Chun, Ooi Chin
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 7, 2022,
  • [32] M-PINN: A mesh-based physics-informed neural network for linear elastic problems in solid mechanics
    Wang, Lu
    Liu, Guangyan
    Wang, Guanglun
    Zhang, Kai
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (09)
  • [33] VC-PINN: Variable coefficient physics-informed neural network for forward and inverse problems of PDEs with variable coefficient
    Miao, Zhengwu
    Chen, Yong
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 456
  • [34] MRF-PINN: a multi-receptive-field convolutional physics-informed neural network for solving partial differential equations
    Zhang, Shihong
    Zhang, Chi
    Han, Xiao
    Wang, Bosen
    COMPUTATIONAL MECHANICS, 2025, 75 (03) : 1137 - 1163
  • [35] Physics-informed neural network based on control volumes for solving time-independent problems
    Wei, Chang
    Fan, Yuchen
    Zhou, Yongqing
    Liu, Xin
    Li, Chi
    Li, Xinying
    Wang, Heyang
    PHYSICS OF FLUIDS, 2025, 37 (03)
  • [36] Asymptotic Physics-Informed Neural Networks for Solving Singularly Perturbed Problems
    Shan, Bin
    Li, Ye
    BIG DATA AND SECURITY, ICBDS 2023, PT II, 2024, 2100 : 15 - 26
  • [37] A Fast Physics-informed Neural Network Based on Extreme Learning Machine for Solving Magnetostatic Problems
    Sato, Takahiro
    Sasaki, Hidenori
    Sato, Yuki
    2023 24TH INTERNATIONAL CONFERENCE ON THE COMPUTATION OF ELECTROMAGNETIC FIELDS, COMPUMAG, 2023,
  • [38] Fluid Flow Modelling Using Physics-Informed Convolutional Neural Network in Parametrised Domains
    Bublik, Ondrej
    Heidler, Vaclav
    Pecka, Ales
    Vimmr, Jan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2023, 37 (01) : 67 - 81
  • [39] Physics-informed quantum neural network for solving forward and inverse problems of partial differential equations
    Xiao, Y.
    Yang, L. M.
    Shu, C.
    Chew, S. C.
    Khoo, B. C.
    Cui, Y. D.
    Liu, Y. Y.
    PHYSICS OF FLUIDS, 2024, 36 (09)
  • [40] A novel normalized reduced-order physics-informed neural network for solving inverse problems
    Luong, Khang A.
    Le-Duc, Thang
    Lee, Seunghye
    Lee, Jaehong
    ENGINEERING WITH COMPUTERS, 2024, 40 (05) : 3253 - 3272