Characteristics of arsenate removal from water by metal-organic frameworks (MOFs)

被引:95
|
作者
Li, Jie [1 ]
Wu, Yi-nan [1 ]
Li, Zehua [1 ]
Zhu, Miao [1 ]
Li, Fengting [1 ]
机构
[1] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse Stu, Shanghai 200092, Peoples R China
基金
美国国家科学基金会;
关键词
adsorption characteristics; adsorption mechanism; arsenate; MIL-53(Al); ADSORPTION; OXIDE; ADSORBENT;
D O I
10.2166/wst.2014.390
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Contamination of arsenic in groundwater and surface water occurs frequently across the globe, requiring an effective purification technology. Among the common technologies, the adsorption method is widely used for the merits of low cost and easy operation. Nevertheless, the development of efficient adsorbents remains one of the central challenges in this field. In this article, one kind of typical porous metal-organic framework material (MIL-53(Al)) was explored for the removal of arsenate from water. MIL-53(Al) has a maximum removal capacity of 105.6 mg/g and a conditional capacity of 15.4 mg/g at a low equilibrium concentration (10 mu g/L). The optimum initial pH value is 8.0. Except for PO43-, other coexisting anions do not show a notable influence on the adsorption capacity of MIL-53(Al). In general, MIL-53(Al) is a promising new material for arsenate removal from water. Investigation of the effects of electrical charges, Fourier transform infrared spectroscopy spectra, and X-ray photoelectron spectroscopy (XPS) spectra revealed that electrostatic attraction and hydrogen bond might be involved in the adsorption process of arsenate onto MIL-53(Al).
引用
收藏
页码:1391 / 1397
页数:7
相关论文
共 50 条
  • [21] Removal of Co(II) from aqueous solution with functionalized metal-organic frameworks (MOFs) composite
    Yuan, Guoyuan
    Tian, Yin
    Li, Min
    Zeng, Yang
    Tu, Hong
    Liao, Jiali
    Yang, Jijun
    Yang, Yuanyou
    Liu, Ning
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2019, 322 (02) : 827 - 838
  • [22] ABC Spotlight on metal-organic frameworks (MOFs)
    Gauglitz, Guenter
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2017, 409 (01) : 1 - 2
  • [23] Assembly of lanthanide metal-organic frameworks (MOFs)
    Cairns, Amy J.
    Eddaoudi, Mohamed
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [24] Metal-organic Frameworks (MOFs) for Sensing Applications
    Ghosh, Sujit K.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : C1329 - C1329
  • [25] ABC Spotlight on metal-organic frameworks (MOFs)
    Günter Gauglitz
    Analytical and Bioanalytical Chemistry, 2017, 409 : 1 - 2
  • [26] Metal-organic frameworks (MOFs) for nuclear applications
    Nenoff, Tina M.
    Sava, Dorina F.
    Rodriguez, Mark A.
    Chapman, Karena W.
    Chupas, Peter J.
    Oliver, Scott R. J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [27] Engineering of metal-organic frameworks (MOFs) for thermometry
    Kanzariya, Dashrathbhai B.
    Chaudhary, Meetkumar Y.
    Pal, Tapan K.
    DALTON TRANSACTIONS, 2023, 52 (22) : 7383 - 7404
  • [28] Metal-Organic Frameworks (MOFs) for Cancer Therapy
    Saeb, Mohammad Reza
    Rabiee, Navid
    Mozafari, Masoud
    Verpoort, Francis
    Voskressensky, Leonid G.
    Luque, Rafael
    MATERIALS, 2021, 14 (23)
  • [29] Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review
    Khan, Nazmul Abedin
    Hasan, Zubair
    Jhung, Sung Hwa
    JOURNAL OF HAZARDOUS MATERIALS, 2013, 244 : 444 - 456
  • [30] Interpenetrated metal-organic frameworks (MOFs) and their applications
    Ugale, Bharat
    Nagaraja, C. M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : C1154 - C1154