The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 degrees C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.
机构:
Department of Geological Sciences, University of Southern California, Los Angeles,CA,90007, United StatesDepartment of Geological Sciences, University of Southern California, Los Angeles,CA,90007, United States
Merriam, Richard
Bischoff, James L.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Geological Sciences, University of Southern California, Los Angeles,CA,90007, United StatesDepartment of Geological Sciences, University of Southern California, Los Angeles,CA,90007, United States
机构:
Department of Material Science and Engineering,Anhui University of Science and TechnologyDepartment of Chemical Engineering,Anhui University of Science and Technology