Synthesis and sintering of TiB2 nanoparticles

被引:46
|
作者
Rabiezadeh, A. [1 ]
Hadian, A. M. [2 ]
Ataie, A. [2 ]
机构
[1] Islamic Azad Univ, Shiraz Branch, Dept Mat Engn, Coll Chem & Mat Engn, Shiraz, Iran
[2] Univ Tehran, Coll Engn, Sch Met & Mat Engn, Tehran, Iran
关键词
Sol-gel processes; Sintering; Electron microscopy; TiB2; TITANIUM DIBORIDE; MECHANICAL-PROPERTIES; SILICON-NITRIDE; TEMPERATURE; ROUTE; DENSIFICATION; REDUCTION;
D O I
10.1016/j.ceramint.2014.07.102
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Titanium diboride nanoparticles were prepared from TTIP and boron oxide using a sol-gel method followed by mechano-chemical reduction in the presence of aluminum. Optimum weight ratio of B2O3:TTIP:2-propanol was 1:3:60. The XRD results revealed that mechano-chemical reduction of the zerogel by aluminum had led to the formation of TiB2 and Al2O3 phases after 15 hours of milling. The XRD results confirmed complete removal of Al2O3 via leaching the milled sample in 10 M NaOH at 150 degrees C. SEM and TEM studies showed that the mean particle size of the synthesized TiB2 is less than 30 nm. The densification experiments were carried out using hot pressing and pressureless sintering. The binderless densification of monolithic TiB2 up to 92% theoretical density was achieved by hot pressing at 1700 degrees C for 2 h in vacuum. The hot pressed TiB2 exhibits high Vickers hardness (25.9 GPa) and relative high fracture toughness (5.7 MPa.m(1/2)). In the pressureless sintering route, a maximum density of 82.3% NI, is achieved after sintering at 1900 degrees C for 2 h in vacuum. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:15775 / 15782
页数:8
相关论文
共 50 条
  • [41] Oxidation behavior of TiB2 micro- and nanoparticles
    R. A. Andrievskii
    Yu. M. Shul’ga
    L. S. Volkova
    I. I. Korobov
    N. N. Dremova
    E. N. Kabachkov
    G. V. Kalinnikov
    S. P. Shilkin
    Inorganic Materials, 2016, 52 : 686 - 693
  • [42] Combustion Synthesis and Infrared Characterization of TiB2
    Li, Su
    Li, Junshou
    Zhao, Fang
    Wang, Mingyuan
    Wu, Xiaojuan
    HIGH-PERFORMANCE CERAMICS VIII, 2014, 602-603 : 142 - 145
  • [43] Optimization of the TiB2 plasma dynamic synthesis
    Sivkov, A. A.
    Pogorelova, S. O.
    Nassyrbayev, A. R.
    Nikitin, D. S.
    6TH INTERNATIONAL CONGRESS ENERGY FLUXES AND RADIATION EFFECTS, 2018, 1115
  • [44] Oxidation Behavior of TiB2 Micro- and Nanoparticles
    Andrievskii, R. A.
    Shul'ga, Yu. M.
    Volkova, L. S.
    Korobov, I. I.
    Dremova, N. N.
    Kabachkov, E. N.
    Kalinnikov, G. V.
    Shilkin, S. P.
    INORGANIC MATERIALS, 2016, 52 (07) : 686 - 693
  • [45] In Situ Synthesis of TiB2/NiAl Composite
    Zhang, Heng
    Zhu, He-Guo
    PROCEEDINGS OF THE 2ND ANNUAL INTERNATIONAL CONFERENCE ON ADVANCED MATERIAL ENGINEERING (AME 2016), 2016, 85 : 131 - 135
  • [46] Welding TiB2 and Fe with combustion synthesis
    He, DH
    Fu, ZY
    Zhang, JY
    Zhang, QJ
    COMPOSITE MATERIALS III, 2003, 249 : 115 - 118
  • [47] Reactive synthesis of AlN/TiB2 composite
    Zhang, GJ
    Jin, ZZ
    CERAMICS INTERNATIONAL, 1996, 22 (02) : 143 - 147
  • [48] Synthesis of TiB2 + TiC by mechanical alloying
    Zhao, K.Y.
    Zhu, X.K.
    Cheng, B.C.
    Lin, Q.S.
    Zhang, X.Q.
    Chen, T.L.
    Shu, Y.S.
    Yong, Q.L.
    Transactions of Nonferrous Metals Society of China (English Edition), 2001, 11 (01): : 135 - 137
  • [49] Sintering behaviour and phase reactions of TiB2 with ZrO2 additives
    Telle, R.
    Meyer, S.
    Petzow, G.
    Franz, E.D.
    Materials Science and Engineering A, 1988, A105-6 (pt1) : 125 - 129
  • [50] SINTERING BEHAVIOR OF TIB2 WITH CR3C2 ADDITIVE
    MATSUSHITA, J
    NAGASHIMA, H
    SAITO, H
    NIPPON SERAMIKKUSU KYOKAI GAKUJUTSU RONBUNSHI-JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 1990, 98 (05): : 439 - 443