Prediction model of the surface roughness of micro-milling single crystal copper

被引:6
|
作者
Lu, Xiaohong [1 ]
Xue, Liang [1 ]
Ruan, Feixiang [1 ]
Yang, Kun [1 ]
Liang, Steven Y. [2 ]
机构
[1] Dalian Univ Technol, Key Lab Precis & Nontradit Machining Technol, Minist Educ, Dalian, Peoples R China
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
Micro-milling; Prediction model; Single crystal copper; Surface roughness; OPTIMIZATION;
D O I
10.1007/s12206-019-1030-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Presently, the demand for single crystal copper micro-components is increasing in various fields because single crystal copper has good electrical conductivity. Micro-milling technology is an effective processing technology for small single crystal copper parts. Surface roughness is a key performance indicator for micro-milling single crystal copper. Establishing a surface roughness prediction model with high precision is useful to guarantee the processing quality by selecting the cutting parameters for micro-milling. Few studies have currently focused on micro-milling single crystal copper. In this study, the orthogonal experiments of micro-milling single crystal copper were conducted, and the influences of the spindle and feed speeds and axial depth of cut on the surface roughness of micro-milled single crystal copper with different orientations were analyzed by range analyses. The spindle rotation speed was the major affecting factor. The surface roughness of single crystal copper in different crystal orientations was predicted by using the SVM method. Experimental results showed that the average relative error of the surface roughness of , , and crystal orientation single crystal copper was 2.7 %, 3.3 %, and 2.2 %, respectively, and that the maximum relative errors were 7.0 %. 10.1 %, and 3.1 %, respectively. The uncertainty analysis was conducted by using the Monte Carlo method to verify the reliability of the built surface roughness model.
引用
收藏
页码:5369 / 5374
页数:6
相关论文
共 50 条
  • [1] Prediction model of the surface roughness of micro-milling single crystal copper
    Xiaohong Lu
    Liang Xue
    Feixiang Ruan
    Kun Yang
    Steven Y. Liang
    Journal of Mechanical Science and Technology, 2019, 33 : 5369 - 5374
  • [2] Surface topography simulation and roughness prediction of micro-milling single crystal copper
    Lu X.
    Sun X.
    Hou P.
    Xue L.
    Liang S.Y.
    International Journal of Nanomanufacturing, 2021, 17 (02) : 139 - 153
  • [3] Experiment and prediction model for surface roughness in micro-milling
    Shi W.
    Liu Y.
    Wang X.
    Jiang F.
    Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, 2010, 41 (01): : 211 - 215
  • [4] Research on the prediction model of micro-milling surface roughness
    Wang, Xinxin
    Lu, Xiaohong
    Jia, Zhenyuan
    Jia, Xv
    Li, Guangjun
    Wu, Wenyi
    Lu, X. (lxhdlut@dlut.edu.cn), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (09): : 5 - 6
  • [5] Prediction model of cutting force in micro-milling single crystal copper
    Lu, Xiaohong
    Luan, Yihan
    Meng, Xiangyue
    Feng, Jianhui
    Liang, Steven Y.
    INTERNATIONAL JOURNAL OF MANUFACTURING RESEARCH, 2022, 17 (03) : 326 - 339
  • [6] A surface roughness prediction model using response surface methodology in micro-milling Inconel 718
    Lu X.
    Wang F.
    Wang X.
    Lu Y.
    Si L.
    Lu, Xiaohong (lxhdlut@dlut.edu.cn), 2017, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (19) : 230 - 245
  • [7] Model for the prediction of 3D surface topography and surface roughness in micro-milling Inconel 718
    Xiaohong Lu
    Xiaochen Hu
    Zhenyuan Jia
    Mingyang Liu
    Song Gao
    Chenglin Qu
    Steven Y. Liang
    The International Journal of Advanced Manufacturing Technology, 2018, 94 : 2043 - 2056
  • [8] Model for the prediction of 3D surface topography and surface roughness in micro-milling Inconel 718
    Lu, Xiaohong
    Hu, Xiaochen
    Jia, Zhenyuan
    Liu, Mingyang
    Gao, Song
    Qu, Chenglin
    Liang, Steven Y.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 94 (5-8): : 2043 - 2056
  • [9] Research on the prediction model of micro-milling surface roughness of Inconel718 based on SVM
    Lu, Xiaohong
    Hu, Xiaochen
    Wang, Hua
    Si, Likun
    Liu, Yongyun
    Gao, Lusi
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2016, 68 (02) : 206 - 211
  • [10] Investigation of micro-milling process parameters for surface roughness and milling depth
    Ibrahim Etem Saklakoglu
    Sefika Kasman
    The International Journal of Advanced Manufacturing Technology, 2011, 54 : 567 - 578