Deformed Kac-Moody and Virasoro algebras

被引:8
|
作者
Balachandran, A. P. [1 ]
Queiroz, A. R.
Marques, A. M.
Teotonio-Sobrinho, P.
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Univ Brasilia, Ctr Int Fis Mat Condensada, Brasilia, DF, Brazil
[3] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
关键词
D O I
10.1088/1751-8113/40/27/023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Whenever the group R-n acts on an algebra A, there is a method to twist A to a new algebra A. which depends on an antisymmetric matrix. (theta(mu nu) = -theta(nu mu) = constant). The Groenewold - Moyal plane A(theta) ( Rd+1) is an example of such a twisted algebra. We give a general construction to realize this twist in terms of A itself and certain 'charge' operators Q(mu). For A(theta) ( Rd+1), Q(mu) are translation generators. This construction is then applied to twist the oscillators realizing the Kac - Moody ( KM) algebra as well as the KM currents. They give different deformations of the KMalgebra. From one of the deformations of the KM algebra, we construct, via the Sugawara construction, the Virasoro algebra. These deformations have an implication for statistics as well.
引用
收藏
页码:7789 / 7801
页数:13
相关论文
共 50 条
  • [21] A generalization of Kac-Moody algebras
    Harada, K
    Miyamoto, M
    Yamada, H
    GROUPS, DIFFERENCE SETS, AND THE MONSTER, 1996, 4 : 377 - 408
  • [22] GENERALIZED KAC-MOODY ALGEBRAS
    BORCHERDS, R
    JOURNAL OF ALGEBRA, 1988, 115 (02) : 501 - 512
  • [23] Dipolarizations in Kac-Moody Algebras
    Wang, Yan
    Meng, Daoji
    ALGEBRA COLLOQUIUM, 2009, 16 (04) : 669 - 676
  • [24] Quantizations of Kac-Moody Algebras
    Kharchenko, Vladislav
    QUANTUM LIE THEORY: A MULTILINEAR APPROACH, 2015, 2150 : 99 - 127
  • [25] THE SEMI-INFINITE HOMOLOGY OF KAC-MOODY AND VIRASORO LIE-ALGEBRAS
    FEIGIN, BL
    RUSSIAN MATHEMATICAL SURVEYS, 1984, 39 (02) : 155 - 156
  • [26] LATTICE VIRASORO FROM LATTICE KAC-MOODY
    BELOV, AA
    CHALTIKIAN, KD
    PHYSICS LETTERS B, 1993, 317 (1-2) : 73 - 77
  • [27] On Gradations of Decomposable Kac-Moody Lie Algebras by Kac-Moody Root Systems
    Ben Messaoud, Hechmi
    Layouni, Marwa
    JOURNAL OF LIE THEORY, 2022, 32 (04) : 937 - 971
  • [28] Tubular algebras and affine Kac-Moody algebras
    Zheng-xin CHEN & Ya-nan LIN School of Mathematics and Computer Science
    School of Mathematical Sciences
    ScienceinChina(SeriesA:Mathematics), 2007, (04) : 521 - 532
  • [29] Tubular algebras and affine Kac-Moody algebras
    Chen, Zheng-an
    Lin, Ya-nan
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (04): : 521 - 532
  • [30] Tubular algebras and affine Kac-Moody algebras
    Zheng-xin Chen
    Ya-nan Lin
    Science in China Series A: Mathematics, 2007, 50 : 521 - 532