POLARIZATION OF THE VACUUM OF THE QUANTIZED SPINOR FIELD BY A TOPOLOGICAL DEFECT IN THE TWO-DIMENSIONAL SPACE

被引:0
|
作者
Sitenko, Yu A. [1 ]
Gorkavenko, V. M. [2 ]
机构
[1] Natl Acad Sci Ukraine, Bogolyubov Inst Theoret Phys, 14-B,Metrol Str, UA-03143 Kiev, Ukraine
[2] Taras Shevchenko Natl Univ Kyiv, 64 Volodymyrska Str, UA-01601 Kiev, Ukraine
来源
UKRAINIAN JOURNAL OF PHYSICS | 2019年 / 64卷 / 11期
关键词
vacuum polarization; vortex; current; magnetic flux; ELECTRON-CHARGE FRACTIONIZATION; SINGULAR MAGNETIC VORTEX; SELF-ADJOINTNESS; FERMION-VACUUM; SYMMETRY; GEOMETRY;
D O I
10.15407/ujpe64.11.1069
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The two-dimensional space with a topological defect is a transverse section of the three-dimensional space with an Abrikosov-Nielsen-Olesen vortex, i.e. a gauge-flux-carrying tube which is impenetrable for quantum matter. Charged spinor matter field is quantized in this section with the most general mathematically admissible boundary condition at the edge of the defect. We show that a current and a magnetic field are induced in the vacuum. The dependence of results on the boundary conditions is studied, and we find that the requirement of finiteness of the total induced vacuum magnetic flux removes an ambiguity in the choice of boundary conditions. The differences between the cases of massive and massless spinor matters are discussed.
引用
收藏
页码:1069 / 1077
页数:9
相关论文
共 50 条
  • [31] Two-dimensional topological semimetals
    冯晓龙
    朱娇娇
    吴维康
    杨声远
    Chinese Physics B, 2021, 30 (10) : 566 - 578
  • [32] Topological two-dimensional polymers
    Springer, Maximilian A.
    Liu, Tsai-Jung
    Kuc, Agnieszka
    Heine, Thomas
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (07) : 2007 - 2019
  • [33] Two-dimensional topological semimetals*
    Feng, Xiaolong
    Zhu, Jiaojiao
    Wu, Weikang
    Yang, Shengyuan A.
    CHINESE PHYSICS B, 2021, 30 (10)
  • [34] Two-dimensional topological photonics
    Khanikaev, Alexander B.
    Shvets, Gennady
    NATURE PHOTONICS, 2017, 11 (12) : 763 - 773
  • [35] Two-dimensional topological photonics
    Alexander B. Khanikaev
    Gennady Shvets
    Nature Photonics, 2017, 11 : 763 - 773
  • [36] Evolution of a two-dimensional foam containing a single topological defect: An experimental study
    Kader, AAE
    Earnshaw, JC
    PHYSICAL REVIEW E, 1997, 56 (03) : 3251 - 3255
  • [37] Two-dimensional topological quantum walks in the momentum space of structured light
    D'Errico, Alessio
    Cardano, Filippo
    Maffei, Maria
    Dauphin, Alexandre
    Barboza, Raouf
    Esposito, Chiara
    Piccirillo, Bruno
    Lewenstein, Maciej
    Massignan, Pietro
    Marrucci, Lorenzo
    OPTICA, 2020, 7 (02) : 108 - 114
  • [38] Topological Features of Massive Bosons on Two-Dimensional Einstein Space–Time
    Romeo Brunetti
    Lorenzo Franceschini
    Valter Moretti
    Annales Henri Poincaré, 2009, 10 : 1027 - 1073
  • [39] QUANTIZED MOTION OF 3 TWO-DIMENSIONAL ELECTRONS IN A STRONG MAGNETIC-FIELD
    LAUGHLIN, RB
    PHYSICAL REVIEW B, 1983, 27 (06): : 3383 - 3389