Lithium cobalt oxide coated lithium zinc titanate anode material with an enhanced high rate capability and long lifespan for lithium-ion batteries

被引:40
|
作者
Tang, Haoqing [1 ]
Zhu, Jiangtao [1 ]
Ma, Chenxiang [1 ]
Tang, Zhiyuan [1 ]
机构
[1] Tianjin Univ, Sch Chem & Technol, Dept Appl Chem, Tianjin 300072, Peoples R China
基金
美国国家科学基金会;
关键词
Lithium-ion batteries; Lithium zinc titanate; Lithium cobalt oxide; Surface coating; Electrochemical performance; ELECTROCHEMICAL PERFORMANCE; SURFACE MODIFICATION; CYCLING STABILITY; CATHODE MATERIALS; LICOO2;
D O I
10.1016/j.electacta.2014.08.034
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
LiCoO2 coated Li2ZnTi3O8 is synthesized by a preliminary formation of Li2ZnTi3O8 by facile solid state reaction and a following coating process with LiCoO2 nano layer via a wet chemical process followed by heat treatment. The structure and electrochemical property of the as-prepared samples have been characterized comprehensively. A thin LiCoO2 layer with a thickness of about 2 nm is uniformly coated on the surface of active particles, which does not affect the crystal structure and space group. After LiCoO2 surface modification, high discharge capacities of 192.1, 163.7, 108.2 mAh g(-1) with capacity retention of 99.1, 92.3, 71.4% are obtained at 1.0, 2.0,3.0 A g(-1) after 100 cycles for the coated composite, respectively, which are obviously larger than those of un-coated sample. Besides, the discharge capacity and cyclic stability of Li2ZnTi3O8 after 1000 cycles have been enhanced after coating. Cyclic voltammograms and electrochemical impedance spectroscopy measurements prove that the LiCoO2 coating can dramatically decrease polarization and reduce the charge transfer resistance during repeated Li+ intercalation/de-intercalation process. The improved electrochemical properties of LiCoO2 coated Li2ZnTi3O8 are attributed to small particle sizes, large packed holes, high surface area and better electronic conductive. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:76 / 84
页数:9
相关论文
共 50 条
  • [31] Solution Combustion Synthesis of Lithium Cobalt Oxide - Cathode Material for Lithium-Ion Batteries
    Zhuravlev, Victor D.
    Shikhovtseva, Anna, V
    Ermakova, Larisa, V
    Evshchikz, Elizaveta Yu
    Sherstobitova, Elena A.
    Novikov, Dmitry, V
    Bushkoval, Olga, V
    Dobrovolsky, Yuri A.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (03): : 2965 - 2983
  • [32] Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries
    Jiang, H. R.
    Lu, Ziheng
    Wu, M. C.
    Ciucci, Francesco
    Zhao, T. S.
    NANO ENERGY, 2016, 23 : 97 - 104
  • [33] Ultrafine VN quantum dots modified with a nitrogen-doped reduced graphene oxide anode material for enhanced rate capability and lifespan of lithium-ion batteries
    Wang, Dong
    Guo, Zihan
    Wang, Zhiwei
    Gao, Yanfang
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (18) : 8454 - 8463
  • [34] Graphdiyne: A promising anode material for lithium ion batteries with high capacity and rate capability
    Zhang, Hongyu
    Xia, Yueyuan
    Bu, Hongxia
    Wang, Xiaopeng
    Zhang, Meng
    Luo, Youhua
    Zhao, Mingwen
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (04)
  • [35] Facile synthesis of mesoporous lithium titanate spheres for high rate lithium-ion batteries
    Lin, Yu-Sheng
    Duh, Jenq-Gong
    JOURNAL OF POWER SOURCES, 2011, 196 (24) : 10698 - 10703
  • [36] A double-layer-coated graphite anode material for high-rate lithium-ion batteries
    Dan, Jianglei
    Jin, Chenxin
    Wen, Lijun
    Xu, Guojun
    Li, Xiaomin
    Sun, Fugen
    Zhou, Lang
    Yue, Zhihao
    SOLID STATE SCIENCES, 2023, 141
  • [37] Lithium Lanthanum Titanate derived from Lanthanum Oxalate as the Anode Active Material in Lithium-ion Batteries
    Ma'dika, Benediktus
    Pravitasari, Retna Deca
    Tasomara, Riesma
    Hapsari, Ade Utami
    Damisih
    Rahayu, Sri
    Yuliani, Hanif
    Arjasa, Oka Pradipta
    Herdianto, Nendar
    Deni, Yelvia
    Suyanti
    Syahrial, Anne Zulfia
    Somalu, Mahendra Rao
    Raharjo, Jarot
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2022, 14 (02): : 138 - 145
  • [38] Investigation of lithium insertion in anode material CuSn for lithium-ion batteries
    Hou, Zhu-Feng
    Liu, Hui-Ying
    Zhu, Zi-Zhong
    Huang, Mei-Chun
    Yang, Yong
    Wuli Xuebao/Acta Physica Sinica, 2003, 52 (04):
  • [39] An anode material of CrN for lithium-ion batteries
    Sun, Qian
    Fu, Zheng-Wen
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (08) : A189 - A193
  • [40] Investigation of lithium insertion in anode material CuSn for lithium-ion batteries
    Hou, ZF
    Liu, HY
    Zhu, ZZ
    Huang, MC
    Yang, Y
    ACTA PHYSICA SINICA, 2003, 52 (04) : 952 - 957