Detection and classification of lung nodules in chest X-ray images using deep convolutional neural networks

被引:17
|
作者
Mendoza, Julio [1 ]
Pedrini, Helio [1 ]
机构
[1] Univ Estadual Campinas, Inst Comp, Av Albert Einstein 1251, BR-13083852 Campinas, SP, Brazil
关键词
chest X-ray images; computer-aided diagnosis; deep convolutional neural networks; lung nodules; COMPUTER-AIDED DIAGNOSIS; RADIOGRAPHS; CANCER; SEGMENTATION; SCHEME; FUSION; MODELS; SYSTEM;
D O I
10.1111/coin.12241
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lung nodule classification is one of the main topics related to computer-aided detection systems. Although convolutional neural networks (CNNs) have been demonstrated to perform well on many tasks, there are few explorations of their use for classifying lung nodules in chest X-ray (CXR) images. In this work, we proposed and analyzed a pipeline for detecting lung nodules in CXR images that includes lung area segmentation, potential nodule localization, and nodule candidate classification. We presented a method for classifying nodule candidates with a CNN trained from the scratch. The effectiveness of our method relies on the selection of data augmentation parameters, the design of a specialized CNN architecture, the use of dropout regularization on the network, inclusive in convolutional layers, and addressing the lack of nodule samples compared to background samples balancing mini-batches on each stochastic gradient descent iteration. All model selection decisions were taken using a CXR subset of the Lung Image Database Consortium and Image Database Resource Initiative dataset separately. Thus, we used all images with nodules in the Japanese Society of Radiological Technology dataset for evaluation. Our experiments showed that CNNs were capable of achieving competitive results when compared to state-of-the-art methods. Our proposal obtained an area under the free-response receiver operating characteristic curve of 7.76 considering 10 false positives per image (FPPI), and sensitivity values of 73.1% and 79.6% with 2 and 5 FPPI, respectively.
引用
收藏
页码:370 / 401
页数:32
相关论文
共 50 条
  • [41] Automatic classification of medical X-ray images with convolutional neural networks
    Nkwentsha, Xolisani
    Hounkanrin, Anicet
    Nicolls, Fred
    2020 INTERNATIONAL SAUPEC/ROBMECH/PRASA CONFERENCE, 2020, : 814 - 817
  • [42] A Convolutional Neural Network Architecture for Segmentation of Lung Diseases Using Chest X-ray Images
    Sulaiman, Adel
    Anand, Vatsala
    Gupta, Sheifali
    Asiri, Yousef
    Elmagzoub, M. A.
    Reshan, Mana Saleh Al
    Shaikh, Asadullah
    DIAGNOSTICS, 2023, 13 (09)
  • [43] Detecting Covid19 and pneumonia from chest X-ray images using deep convolutional neural networks
    Kavya, Nallamothu Sri
    Shilpa, Thotapalli
    Veeranjaneyulu, N.
    Priya, D. Divya
    MATERIALS TODAY-PROCEEDINGS, 2022, 64 : 737 - 743
  • [44] Detecting Covid19 and pneumonia from chest X-ray images using deep convolutional neural networks
    Kavya, Nallamothu Sri
    Shilpa, Thotapalli
    Veeranjaneyulu, N.
    Priya, D. Divya
    MATERIALS TODAY-PROCEEDINGS, 2022, 64 : 737 - 743
  • [45] An Enhanced Technique of COVID-19 Detection and Classification Using Deep Convolutional Neural Network from Chest X-Ray and CT Images
    Islam, Md Khairul
    Rahman, Md Mahbubur
    Ali, Md Shahin
    Miah, Md Sipon
    Rahman, Md Habibur
    BIOMED RESEARCH INTERNATIONAL, 2023, 2023
  • [46] Convolutional Neural Networks for Pneumonia Diagnosis Based on Chest X-Ray Images
    Li, Qian
    2022 INTERNATIONAL CONFERENCE ON BIG DATA, INFORMATION AND COMPUTER NETWORK (BDICN 2022), 2022, : 717 - 720
  • [47] Lung X-ray Segmentation using Deep Convolutional Neural Networks on Contrast-Enhanced Binarized Images
    Chen, Hsin-Jui
    Ruan, Shanq-Jang
    Huang, Sha-Wo
    Peng, Yan-Tsung
    MATHEMATICS, 2020, 8 (04)
  • [48] Modeling of deep learning enabled lung disease detection and classification on chest X-ray images
    Saturi, Swapna
    Banda, Sandhya
    INTERNATIONAL JOURNAL OF HEALTHCARE MANAGEMENT, 2022,
  • [49] Using Convolutional Neural Network for Chest X-ray Image classification
    Soric, Matija
    Pongrac, Danijela
    Inza, Inaki
    2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY (MIPRO 2020), 2020, : 1771 - 1776
  • [50] Deep Learning Convolutional Neural Network for SARS-CoV-2 Detection Using Chest X-Ray Images
    Ahmed, Ali Mohammed Saleh
    Khudhair, Inteasar Yaseen
    Noaman, Salam Abdulkhaleq
    ACTA INFORMATICA PRAGENSIA, 2023, 12 (01) : 71 - 86