Detection and classification of lung nodules in chest X-ray images using deep convolutional neural networks

被引:17
|
作者
Mendoza, Julio [1 ]
Pedrini, Helio [1 ]
机构
[1] Univ Estadual Campinas, Inst Comp, Av Albert Einstein 1251, BR-13083852 Campinas, SP, Brazil
关键词
chest X-ray images; computer-aided diagnosis; deep convolutional neural networks; lung nodules; COMPUTER-AIDED DIAGNOSIS; RADIOGRAPHS; CANCER; SEGMENTATION; SCHEME; FUSION; MODELS; SYSTEM;
D O I
10.1111/coin.12241
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lung nodule classification is one of the main topics related to computer-aided detection systems. Although convolutional neural networks (CNNs) have been demonstrated to perform well on many tasks, there are few explorations of their use for classifying lung nodules in chest X-ray (CXR) images. In this work, we proposed and analyzed a pipeline for detecting lung nodules in CXR images that includes lung area segmentation, potential nodule localization, and nodule candidate classification. We presented a method for classifying nodule candidates with a CNN trained from the scratch. The effectiveness of our method relies on the selection of data augmentation parameters, the design of a specialized CNN architecture, the use of dropout regularization on the network, inclusive in convolutional layers, and addressing the lack of nodule samples compared to background samples balancing mini-batches on each stochastic gradient descent iteration. All model selection decisions were taken using a CXR subset of the Lung Image Database Consortium and Image Database Resource Initiative dataset separately. Thus, we used all images with nodules in the Japanese Society of Radiological Technology dataset for evaluation. Our experiments showed that CNNs were capable of achieving competitive results when compared to state-of-the-art methods. Our proposal obtained an area under the free-response receiver operating characteristic curve of 7.76 considering 10 false positives per image (FPPI), and sensitivity values of 73.1% and 79.6% with 2 and 5 FPPI, respectively.
引用
收藏
页码:370 / 401
页数:32
相关论文
共 50 条
  • [1] Classification of X-Ray Images of the Chest Using Convolutional Neural Networks
    Mochurad, Lesia
    Dereviannyi, Andrii
    Antoniv, Uliana
    IDDM 2021: INFORMATICS & DATA-DRIVEN MEDICINE: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE (IDDM 2021), 2021, 3038 : 269 - 282
  • [2] Lung Region Segmentation in Chest X-Ray Images using Deep Convolutional Neural Networks
    Portela, R. D. S.
    Pereira, J. R. G.
    Costa, M. G. F.
    Costa Filho, C. F. F.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1246 - 1249
  • [3] Classification of Chest X-ray Images Using Deep Convolutional Neural Network
    Hao, Ting
    Lu, Tong
    Li, Xia
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 440 - 445
  • [4] Pneumonia Detection on Chest X-ray Images Using Ensemble of Deep Convolutional Neural Networks
    Mabrouk, Alhassan
    Diaz Redondo, Rebeca P.
    Dahou, Abdelghani
    Abd Elaziz, Mohamed
    Kayed, Mohammed
    APPLIED SCIENCES-BASEL, 2022, 12 (13):
  • [5] Pneumonia Detection in Chest X-ray Images using Convolutional Neural Networks
    Palomo, Esteban J.
    Zafra-Santisteban, Miguel A.
    Luque-Baena, Rafael M.
    2022 IEEE INTERNATIONAL CONFERENCE ON METROLOGY FOR EXTENDED REALITY, ARTIFICIAL INTELLIGENCE AND NEURAL ENGINEERING (METROXRAINE), 2022, : 16 - 21
  • [6] Designing Chest X-ray Datasets for Improving Lung Nodules Detection Through Convolutional Neural Networks
    Acenero Eixarch, Raul
    Diaz-Usechi Laplaza, Raul
    Berlanga, Rafael
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2021, 339 : 345 - 348
  • [7] Detection of COVID-19 from Chest X-ray Images Using Deep Convolutional Neural Networks
    Khasawneh, Natheer
    Fraiwan, Mohammad
    Fraiwan, Luay
    Khassawneh, Basheer
    Ibnian, Ali
    SENSORS, 2021, 21 (17)
  • [8] Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning
    Jain, Rachna
    Nagrath, Preeti
    Kataria, Gaurav
    Kaushik, V. Sirish
    Hemanth, D. Jude
    MEASUREMENT, 2020, 165
  • [9] Rapid detection of COVID-19 from chest X-ray images using deep convolutional neural networks
    Panigrahi, Sweta
    Raju, U. S. N.
    Pathak, Debanjan
    Kadambari, K. V.
    Ala, Harika
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2023, 41 (01) : 1 - 15
  • [10] Detection and Classification of COVID 19 using Convolutional Neural Network from Chest X-ray Images
    Chakravorti, Tatiana
    Addala, Vinay Kumar
    Verma, J. Shivam
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,