Onco-proteogenomics: cancer proteomics joins forces with genomics

被引:5
|
作者
Alfaro, Javier A. [1 ,2 ,3 ]
Sinha, Ankit [1 ,2 ]
Kislinger, Thomas [1 ,2 ]
Boutros, Paul C. [1 ,3 ,4 ]
机构
[1] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[2] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[3] Ontario Inst Canc Res, Informat & Biocomp Program, Toronto, ON, Canada
[4] Univ Toronto, Dept Pharmacol & Toxicol, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MASS-SPECTROMETRY; MESSENGER-RNA; PROTEIN EXPRESSION; GENETIC-VARIANTS; LUNG-CANCER; IDENTIFICATION; DISCOVERY; ABUNDANCE; PEPTIDES; DATABASE;
D O I
10.1038/NMETH.3138
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The complexities of tumor genomes are rapidly being uncovered, but how they are regulated into functional proteomes remains poorly understood. Standard proteomics workflows use databases of known proteins, but these databases do not capture the uniqueness of the cancer transcriptome, with its point mutations, unusual splice variants and gene fusions. Onco-proteogenomics integrates mass spectrometry-generated data with genomic information to identify tumor-specific peptides. Linking tumor-derived DNA, RNA and protein measurements into a central-dogma perspective has the potential to improve our understanding of cancer biology.
引用
收藏
页码:1107 / 1113
页数:7
相关论文
共 50 条
  • [1] Onco-proteogenomics: cancer proteomics joins forces with genomics
    Javier A Alfaro
    Ankit Sinha
    Thomas Kislinger
    Paul C Boutros
    Nature Methods, 2014, 11 : 1107 - 1113
  • [2] Erratum: Onco-proteogenomics: cancer proteomics joins forces with genomics
    Javier A Alfaro
    Ankit Sinha
    Thomas Kislinger
    Paul C Boutros
    Nature Methods, 2015, 12 : 160 - 160
  • [3] Onco-proteogenomics: cancer proteomics joins forces with genomics (vol 11, pg 1107, 2014)
    Alfaro, Javier A.
    Sinha, Ankit
    Kislinger, Thomas
    Boutros, Paul C.
    NATURE METHODS, 2015, 12 (02) : 160 - 160
  • [4] Onco-proteogenomics: a novel approach to identify cancer-specific mutations combining proteomics and transcriptome deep sequencing
    Helmy, Mohamed
    Sugiyama, Naoyuki
    Tomita, Masaru
    Ishihama, Yasushi
    GENOME BIOLOGY, 2010, 11
  • [5] Onco-proteogenomics: a novel approach to identify cancer-specific mutations combining proteomics and transcriptome deep sequencing
    Mohamed Helmy
    Naoyuki Sugiyama
    Masaru Tomita
    Yasushi Ishihama
    Genome Biology, 11 (Suppl 1)
  • [6] Onco-proteogenomics: Multi-omics level data integration for accurate phenotype prediction
    Dimitrakopoulos, Lampros
    Prassas, Ioannis
    Diamandis, Eleftherios P.
    Charames, George S.
    CRITICAL REVIEWS IN CLINICAL LABORATORY SCIENCES, 2017, 54 (06) : 414 - 432
  • [7] Proteomic analysis and translational perspective of hepatocellular carcinoma: Identification of diagnostic protein biomarkers by an onco-proteogenomics approach
    Chiou, Shyh-Horng
    Lee, King-Teh
    KAOHSIUNG JOURNAL OF MEDICAL SCIENCES, 2016, 32 (11): : 535 - 544
  • [8] Proteogenomics in microbiology: Taking the right turn at the junction of genomics and proteomics
    Kucharova, Veronika
    Wiker, Harald G.
    PROTEOMICS, 2014, 14 (23-24) : 2660 - 2675
  • [9] Onco-proteogenomics identifies urinary S100A9 and GRN as potential combinatorial biomarkers for early diagnosis of hepatocellular carcinoma
    Huang, Chun-Hao
    Kuo, Chao-Jen
    Liang, Shih-Shin
    Chi, Shu-Wen
    Hsi, Edward
    Chen, Chi-Chao
    Lee, King-Teh
    Chiou, Shyh-Horng
    BBA CLINICAL, 2015, 3 : 205 - 213
  • [10] MSSS: Bioinformatics Method Facilitates Searching Large Set of Peptide Spectra Against Large Nucleotide Databases for Structural- and Onco-proteogenomics
    Helmy, M.
    Sugiyama, N.
    Tomita, M.
    Ishihama, Y.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2011, 47 : S53 - S54