Boundedness of the Vector-Valued Intrinsic Square Functions on Variable Exponents Herz Spaces

被引:3
|
作者
Omer, Omer Abdalrhman [1 ]
Abidin, Muhammad Zainul [1 ]
机构
[1] Zhejiang Normal Univ, Coll Math & Comp Sci, Jinhua 321004, Zhejiang, Peoples R China
关键词
intrinsic square function; vector-valued inequality; Herz spaces; BMO function; variable exponent; sublinear operators; SUBLINEAR-OPERATORS; SOBOLEV SPACES; COMMUTATORS; MORREY; LEBESGUE;
D O I
10.3390/math10071168
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the authors study the boundedness of the vector-valued inequality for the intrinsic square function and the boundedness of the scalar-valued intrinsic square function on variable exponents Herz spaces K-rho(.)(alpha,q(.)) (R-n). In addition, the boundedness of commutators generated P() by the scalar valued intrinsic square function and BMO class is also studied on K-rho(.)(alpha,q(.)) (R-n).
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Boundedness for Hardy Type Operators on Herz Spaces with Variable Exponents
    Min Wang
    Lisheng Shu
    Meng Qu
    AnalysisinTheoryandApplications, 2014, 30 (02) : 224 - 235
  • [22] Boundedness of Vector Valued Bilinear Calderón-Zygmund Operators on Products of Weighted Herz-Morrey Spaces with Variable Exponents
    Shengrong WANG
    Jingshi XU
    Chinese Annals of Mathematics,Series B, 2021, (05) : 693 - 720
  • [23] Boundedness of Vector Valued Bilinear Calderón-Zygmund Operators on Products of Weighted Herz-Morrey Spaces with Variable Exponents
    Shengrong Wang
    Jingshi Xu
    Chinese Annals of Mathematics, Series B, 2021, 42 : 693 - 720
  • [24] TRANSITIVITY IN SPACES OF VECTOR-VALUED FUNCTIONS
    Cabello Sanchez, Felix
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 : 601 - 608
  • [25] Realcompactness and spaces of vector-valued functions
    Araujo, J
    FUNDAMENTA MATHEMATICAE, 2002, 172 (01) : 27 - 40
  • [26] Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    Ruiz de Alarcon, Alberto
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 115 (01)
  • [27] Sobolev spaces of vector-valued functions
    Iván Caamaño
    Jesús Á. Jaramillo
    Ángeles Prieto
    Alberto Ruiz de Alarcón
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [28] Spaces of vector-valued functions and their duals
    Roth, Walter
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (8-9) : 1063 - 1081
  • [29] SPACES OF VECTOR-VALUED MEASURABLE FUNCTIONS
    JONGE, ED
    MATHEMATISCHE ZEITSCHRIFT, 1976, 149 (02) : 97 - 107
  • [30] ON SPACES OF MEASURABLE VECTOR-VALUED FUNCTIONS
    KALTON, NJ
    HOUSTON JOURNAL OF MATHEMATICS, 1983, 9 (03): : 397 - 405