Asymptotically log Fano varieties

被引:17
|
作者
Cheltsov, Ivan A. [1 ,2 ]
Rubinstein, Yanir A. [3 ]
机构
[1] Univ Edinburgh, Dept Math, Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Natl Res Univ Higher Sch Econ, Russian Federat AG Lab, HSE, Moscow 117312, Russia
[3] Univ Maryland, College Pk, MD 20742 USA
关键词
Fano varieties; log Fano varieties; Kahler-Einstein metric; Conical singularities; Kahler edge metrics; EINSTEIN-METRICS; KAHLER-MANIFOLDS; SURFACES; THEOREM;
D O I
10.1016/j.aim.2015.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the study of Fano type varieties we define a new class of log pairs that we call asymptotically log Fano varieties and strongly asymptotically log Fano varieties. We study their properties in dimension two under an additional assumption of log smoothness, and give a complete classification of two dimensional strongly asymptotically log smooth log Fano varieties. Based on this classification we formulate an asymptotic logarithmic version of Calabi's conjecture for del Pezzo surfaces for the existence of Kahler Einstein edge metrics in this regime. We make some initial progress towards its proof by demonstrating some existence and non-existence results, among them a generalization of Matsushima's result on the reductivity of the automorphism group of the pair, and results on log canonical thresholds of pairs. One by-product of this study is a new conjectural picture for the small angle regime and limit which reveals a rich structure in the asymptotic regime, of which a folklore conjecture concerning the case of a Fano manifold with an anticanonical divisor is a special case. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1241 / 1300
页数:60
相关论文
共 50 条
  • [31] INVARIANTS OF FANO VARIETIES IN FAMILIES
    Gounelas, Frank
    Javanpeykar, Ariyan
    MOSCOW MATHEMATICAL JOURNAL, 2018, 18 (02) : 305 - 319
  • [32] On semistable degenerations of Fano varieties
    Konstantin Loginov
    European Journal of Mathematics, 2022, 8 : 991 - 1005
  • [33] Motives of some Fano varieties
    James D. Lewis
    Ali Sinan Sertöz
    Mathematische Zeitschrift, 2009, 261 : 531 - 544
  • [34] The Lefschetz defect of Fano varieties
    Casagrande, C.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (06) : 3061 - 3075
  • [35] Gorenstein spherical Fano varieties
    Gagliardi, Giuliano
    Hofscheier, Johannes
    GEOMETRIAE DEDICATA, 2015, 178 (01) : 111 - 133
  • [36] Motives of some Fano varieties
    Lewis, James D.
    Sertoez, Ali Sinan
    MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (03) : 531 - 544
  • [37] Complements and coregularity of Fano varieties
    Figueroa, Fernando
    Filipazzi, Stefano
    Moraga, Joaquin
    Peng, Junyao
    FORUM OF MATHEMATICS SIGMA, 2025, 13
  • [38] Gorenstein spherical Fano varieties
    Giuliano Gagliardi
    Johannes Hofscheier
    Geometriae Dedicata, 2015, 178 : 111 - 133
  • [39] On Fano Schemes of Toric Varieties
    Ilten, Nathan
    Zotine, Alexandre
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2017, 1 (01): : 152 - 174
  • [40] On semistable degenerations of Fano varieties
    Loginov, Konstantin
    EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (03) : 991 - 1005