Intrusion Detection for High-speed Railway System: A Faster R-CNN Approach

被引:0
|
作者
Xiao, Xiao [1 ]
Ma, Xinrui [1 ]
Hui, Yilong [1 ]
Yin, Zhisheng [2 ]
Luan, Tom H. [2 ]
Wu, Yu [3 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Xidian Univ, Sch Cyber Engn, Xian 710071, Peoples R China
[3] Univ Elect Sci & Technol China, Key Lab Opt Fiber Sensing & Commun, Chengdu 610054, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金;
关键词
Distributed acoustic sensing; high-speed railway intrusion detection; Faster R-CNN;
D O I
10.1109/VTC2021-FALL52928.2021.9625580
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, the abnormal intrusion detection has become an urgent problem in high-speed railway system. One way to solve this problem is the optical fiber distributed acoustic sensing (DAS) system that can monitor the intrusion events and provide early warning. However, most long-distance DAS systems are unable to distinguish signal types to improve the detection performance. Moreover, the traditional fiber optic sensing system is susceptible to interference from environmental factors, resulting in false detections and alarms. To this end, with the adoption of DAS system, we propose a railway intrusion detection system based on Faster R-CNN. In our system, we first design the DAS system to collect the optical fiber acoustic signals. Then, the collected signals are normalized in temporal and spatial dimensions and converted into Spatio-temporal images. After that, we design the Faster R-CNN algorithm to extract the Spatio-temporal features to detect and classify five types of abnormal intrusion events. The experimental results demonstrate that the average detection precision of our system for all abnormal intrusion events is above 89%. In addition, compared with the conventional methods, our system achieves the highest detection precision. Meanwhile, the system can distinguish the non-threatening background noise, which is of great help to reduce the system false positive rate.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Feature Enhanced Faster R-CNN for Object Detection
    Jiang, Jun
    Hu, Zhongbing
    MIPPR 2019: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2020, 11429
  • [32] Faster R-CNN Based Microscopic Cell Detection
    Yang, Su
    Fang, Bin
    Tang, Wei
    Wu, Xuegang
    Qian, Jiye
    Yang, Weibin
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 345 - 350
  • [33] Faster R-CNN for Small Traffic Sign Detection
    Zhang, Zhuo
    Zhou, Xiaolong
    Chan, Sixian
    Chen, Shengyong
    Liu, Honghai
    COMPUTER VISION, PT III, 2017, 773 : 155 - 165
  • [34] An Improved Faster R-CNN for Small Object Detection
    Cao, Changqing
    Wang, Bo
    Zhang, Wenrui
    Zeng, Xiaodong
    Yan, Xu
    Feng, Zhejun
    Liu, Yutao
    Wu, Zengyan
    IEEE ACCESS, 2019, 7 : 106838 - 106846
  • [35] An Efficient Approach for Polyps Detection in Endoscopic Videos Based on Faster R-CNN
    Mo, Xi
    Tao, Ke
    Wang, Quan
    Wang, Guanghui
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3929 - 3934
  • [36] Railway Catenary Insulator Recognition Based on Improved Faster R-CNN
    Ju, Jiang Xiang
    Liang, Du Xiao
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2022, 56 (06) : 553 - 563
  • [37] Is Faster R-CNN Doing Well for Pedestrian Detection?
    Zhang, Liliang
    Lin, Liang
    Liang, Xiaodan
    He, Kaiming
    COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 : 443 - 457
  • [38] Road Damage Detection and Classification with Faster R-CNN
    Wang, Wenzhe
    Wu, Bin
    Yang, Sixiong
    Wang, Zhixiang
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 5220 - 5223
  • [39] Pedestrian detection method based on Faster R-CNN
    Zhang, Hui
    Du, Yu
    Ning, Shurong
    Zhang, Yonghua
    Yang, Shuo
    Du, Chen
    2017 13TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2017, : 427 - 430
  • [40] Dense Pedestrian Detection with Iterative Faster R-CNN
    He, Yuzhe
    Xu, Guangmei
    He, Ning
    Yu, Haigang
    Zhang, Ren
    Yan, Kang
    Computer Engineering and Applications, 2023, 59 (21) : 214 - 221