A framework based on physics-informed neural networks and extreme learning for the analysis of composite structures

被引:38
|
作者
Yan, C. A. [1 ]
Vescovini, R. [1 ]
Dozio, L. [1 ]
机构
[1] Politecn Milan, Dipartimento Sci & Tecnol Aerosp, Via La Masa 34, I-20156 Milan, Italy
关键词
Physics-informed neural networks; Extreme learning machine; Structural analysis; Shell structures;
D O I
10.1016/j.compstruc.2022.106761
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a novel approach for solving direct problems in linear elasticity involving plate and shell structures. The method relies upon a combination of Physics-Informed Neural Networks and Extreme Learning Machine. A subdomain decomposition method is proposed as a viable mean for studying structures composed by multiple plate/shell elements, as well as improving the solution in domains composed by one single element. Sensitivity studies are presented to gather insight into the effects of different network configurations and sets of hyperparameters. Within the framework presented here, direct problems can be solved with or without available sampled data. In addition, the approach can be extended to the solution of inverse problems. The results are compared with exact elasticity solutions and finite element calculations, illustrating the potential of the approach as an effective mean for addressing a wide class of problems in structural mechanics. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Residual-based attention in physics-informed neural networks
    Anagnostopoulos, Sokratis J.
    Toscano, Juan Diego
    Stergiopulos, Nikolaos
    Karniadakis, George Em
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 421
  • [32] A Compact Memristor Model Based on Physics-Informed Neural Networks
    Lee, Younghyun
    Kim, Kyeongmin
    Lee, Jonghwan
    MICROMACHINES, 2024, 15 (02)
  • [33] Physics-informed neural networks based cascade loss model
    Feng Y.
    Song X.
    Yuan W.
    Lu H.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38 (07): : 845 - 855
  • [34] Learning Free-Surface Flow with Physics-Informed Neural Networks
    Leiteritz, Raphael
    Hurler, Marcel
    Pflueger, Dirk
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1668 - 1673
  • [35] Physics-Informed Neural Networks via Stochastic Hamiltonian Dynamics Learning
    Bajaj, Chandrajit
    Minh Nguyen
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2024, 2024, 1066 : 182 - 197
  • [36] Enhanced physics-informed neural networks for hyperelasticity
    Abueidda, Diab W.
    Koric, Seid
    Guleryuz, Erman
    Sobh, Nahil A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (07) : 1585 - 1601
  • [37] SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS
    Son, Hwijae
    Jang, Jin woo
    Han, Woo jin
    Hwang, Hyung ju
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1679 - 1705
  • [38] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    ADVANCED PHOTONICS, 2022, 4 (06):
  • [39] A physics-informed neural network framework for laminated composite plates under bending
    Wang, Weixi
    Thai, Huu-Tai
    THIN-WALLED STRUCTURES, 2025, 210
  • [40] Physics-informed neural networks for consolidation of soils
    Zhang, Sheng
    Lan, Peng
    Li, Hai-Chao
    Tong, Chen-Xi
    Sheng, Daichao
    ENGINEERING COMPUTATIONS, 2022, 39 (07) : 2845 - 2865