3D bioprinting of engineered breast cancer constructs for personalized and targeted cancer therapy

被引:20
|
作者
Sharifi, Majid [1 ,2 ,3 ]
Bai, Qian [1 ]
Babadaei, Mohammad Mahdi Nejadi [4 ]
Chowdhury, Farhan [5 ]
Hassan, Mahbub [6 ]
Taghizadeh, Akbar [3 ]
Derakhshankhah, Hossein [7 ]
Khan, Suliman [1 ]
Hasan, Anwarul [8 ,9 ]
Falahati, Mojtaba [10 ]
机构
[1] Zhengzhou Univ, Dept Anesthesiol, Affiliated Hosp 2, Zhengzhou, Peoples R China
[2] Shahroud Univ Med Sci, Sch Med, Dept Tissue Engn, Shahroud, Iran
[3] Univ Tabriz, Fac Agr, Dept Anim Sci, Tabriz, Iran
[4] Islamic Azad Univ, Fac Biol Sci, Dept Mol Genet, North Tehran Branch, Tehran, Iran
[5] Southern Illinois Univ Carbondale, Dept Mech Engn & Energy Proc, Carbondale, IL 62901 USA
[6] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[7] Kermanshah Univ Med Sci, Pharmaceut Sci Res Ctr, Hlth Inst, Kermanshah 6714415153, Iran
[8] Qatar Univ, Dept Mech & Ind Engn, Coll Engn, Doha 2713, Qatar
[9] Qatar Univ, Biomed Res Ctr, Doha 2713, Qatar
[10] Islamic Azad Univ, Fac Adv Sci & Technol, Dept Nanotechnol, Tehran Med Sci, Tehran, Iran
基金
中国博士后科学基金;
关键词
3D bioprinting; Breast cancer; Stromal components; Tumor models; Polymeric and composite scaffolds; Drug screening; TUMOR MICROENVIRONMENT; MECHANICAL-PROPERTIES; EXTRACELLULAR-MATRIX; TISSUE STIFFNESS; CULTURE MODELS; LYSYL OXIDASE; CELL-CULTURE; SCAFFOLDS; BONE; DRUG;
D O I
10.1016/j.jconrel.2021.03.026
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The bioprinting technique with specialized tissue production allows the study of biological, physiological, and behavioral changes of cancerous and non-cancerous tissues in response to pharmacological compounds in personalized medicine. To this end, to evaluate the efficacy of anticancer drugs before entering the clinical setting, tissue engineered 3D scaffolds containing breast cancer and derived from the especially patient, similar to the original tissue architecture, can potentially be used. Despite recent advances in the manufacturing of 3D bioprinted breast cancer tissue (BCT), many studies still suffer from reproducibility primarily because of the uncertainty of the materials used in the scaffolds and lack of printing methods. In this review, we present an overview of the breast cancer environment to optimize personalized treatment by examining and identifying the physiological and biological factors that mimic BCT. We also surveyed the materials and techniques related to 3D bioprinting, i.e, 3D bioprinting systems, current strategies for fabrication of 3D bioprinting tissues, cell adhesion and migration in 3D bioprinted BCT, and 3D bioprinted breast cancer metastasis models. Finally, we emphasized on the prospective future applications of 3D bioprinted cancer models for rapid and accurate drug screening in breast cancer.
引用
收藏
页码:91 / 106
页数:16
相关论文
共 50 条
  • [11] 3D Bioprinting of branched vessel constructs
    Koc, B.
    Kucukgul, C.
    Ozler, S. B.
    Altunbek, M.
    Sen, O.
    Culha, M.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2014, 8 : 95 - 96
  • [12] Bioprinting of 3D Functional Tissue Constructs
    He, Jiankang
    Mao, Mao
    Li, Xiao
    Chua, Chee Kai
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2021, 7 (03) : 1 - 2
  • [13] Can 3D bioprinting solve the mystery of senescence in cancer therapy?
    Al Shboul, Sofian
    DeLuca, Valerie J.
    Al Dweiri, Yazan
    Saleh, Tareq
    AGEING RESEARCH REVIEWS, 2022, 81
  • [14] Organotypic cancer tissue models for drug screening: 3D constructs, bioprinting and microfluidic chips
    Radhakrishnan, Janani
    Varadaraj, Sudha
    Dash, Sanat Kumar
    Sharma, Akriti
    Verma, Rama Shanker
    DRUG DISCOVERY TODAY, 2020, 25 (05) : 879 - 890
  • [15] 3D bioprinting for reconstituting the cancer microenvironment
    Pallab Datta
    Madhuri Dey
    Zaman Ataie
    Derya Unutmaz
    Ibrahim T. Ozbolat
    npj Precision Oncology, 4
  • [16] 3D bioprinting complex models of cancer
    Sharma, Ruchi
    Perez, Milena Restan
    da Silva, Victor Allisson
    Thomsen, Jess
    Bhardwaj, Lavanya
    Andrade, Thiago A. M.
    Alhussan, Abdulaziz
    Willerth, Stephanie M.
    BIOMATERIALS SCIENCE, 2023, 11 (10) : 3414 - 3430
  • [17] 3D bioprinting for reconstituting the cancer microenvironment
    Datta, Pallab
    Dey, Madhuri
    Ataie, Zaman
    Unutmaz, Derya
    Ozbolat, Ibrahim T.
    NPJ PRECISION ONCOLOGY, 2020, 4 (01)
  • [18] Recent advances in 3D bioprinting for cancer research: From precision models to personalized therapies
    Ruchika
    Bhardwaj, Neha
    Yadav, Sudesh Kumar
    Saneja, Ankit
    DRUG DISCOVERY TODAY, 2024, 29 (04)
  • [19] Personalized targeted therapy in triple-negative breast cancer
    Ueno, Naoto T.
    ANNALS OF ONCOLOGY, 2015, 26 : 20 - 20
  • [20] 3D BIOPRINTING OF SKIN CONSTRUCTS FOR TOXICOLOGY TESTING
    Ng, Wei Long
    Chua, Chee Kai
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING, 2018, : 146 - 151