Models of the distribution and abundance of hydrogen at the lunar south pole

被引:57
|
作者
Elphic, R. C.
Eke, V. R.
Teodoro, L. F. A.
Lawrence, D. J.
Bussey, D. B. J.
机构
[1] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM 87545 USA
[2] Univ Durham, Dept Phys, Durham DH1 3LE, England
[3] Univ Glasgow, Dept Phys & Astron, Astron & Astrophys Grp, Glasgow G12 8QQ, Lanark, Scotland
[4] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
关键词
D O I
10.1029/2007GL029954
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Permanently shadowed locations at the lunar poles are potential sites for significant concentrations of cold-trapped volatiles, including water ice. Hydrogen enhancements are seen at the poles, but the physical form, abundance and distribution of this hydrogen remains controversial. Using a pixon-based image reconstruction algorithm to effectively improve spatial resolution, we derive maps of the lunar south polar water-equivalent hydrogen concentration that are fully consistent with the orbital neutron measurements, with abundances greater than 0.5 wt% in some permanently shadowed locations. This is much greater than the highest solar wind hydrogen abundance in returned lunar samples, and may indicate ice between regolith grains. If the hydrogen distribution is inhomogeneous within a permanently shadowed crater, then even higher abundances are implied. In Shackleton crater, for example, the derived count rates are consistent with 10% of the crater floor area having 20-wt% water-equivalent hydrogen, and the remainder at 0.25 wt%.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Numerical modeling of the formation of Shackleton crater at the lunar south pole
    Halim, Samuel H.
    Barrett, Natasha
    Boazman, Sarah J.
    Gawronska, Aleksandra J.
    Gilmour, Cosette M.
    Harish
    McCanaan, Katie
    Satyakumar, Animireddi, V
    Shah, Jahnavi
    Kring, David A.
    ICARUS, 2021, 354
  • [42] Lunar South Pole space water extraction and trucking system
    Zuppero, A
    Zupp, G
    Schnitzler, B
    Larson, TK
    Rice, JW
    SPACE 98, 1998, : 354 - 362
  • [43] Deep Structure of the Lunar South Pole-Aitken Basin
    James, Peter B.
    Smith, David E.
    Byrne, Paul K.
    Kendall, Jordan D.
    Melosh, H. Jay
    Zuber, Maria T.
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (10) : 5100 - 5106
  • [44] EUROMOON 2000 - A plan for a European lunar South Pole expedition
    Ockels, WJ
    ACTA ASTRONAUTICA, 1997, 41 (4-10) : 579 - 583
  • [45] Elliptical structure of the lunar South Pole-Aitken basin
    Garrick-Bethell, Ian
    Zuber, Maria T.
    ICARUS, 2009, 204 (02) : 399 - 408
  • [46] DISTRIBUTION OF ATOMIC HYDROGEN IN LUNAR ATMOSPHERE
    GOTT, JR
    POTTER, AE
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1968, 49 (04): : 706 - &
  • [47] DEPTH DISTRIBUTION OF HYDROGEN IN LUNAR MATERIALS
    LEICH, DA
    TOMBRELLO, TA
    BURNETT, DS
    EARTH AND PLANETARY SCIENCE LETTERS, 1973, 19 (03) : 305 - 314
  • [48] A newly-identified spectral reflectance signature near the lunar South pole and the South Pole-Aitken Basin
    Vilas, Faith
    Jensen, Elizabeth A.
    Domingue, Deborah L.
    McFadden, Lucy A.
    Runyon, Cassandra J.
    Mendell, Wendell W.
    EARTH PLANETS AND SPACE, 2008, 60 (01): : 67 - 74
  • [49] DISTRIBUTION AND ISOTOPIC ABUNDANCE OF BIOGENIC ELEMENTS IN LUNAR SAMPLES
    KAPLAN, IR
    SPACE LIFE SCIENCES, 1972, 3 (04): : 383 - 403
  • [50] A newly-identified spectral reflectance signature near the lunar South pole and the South Pole-Aitken Basin
    Faith Vilas
    Elizabeth A. Jensen
    Deborah L. Domingue
    Lucy A. McFadden
    Cassandra J. Runyon
    Wendell W. Mendell
    Earth, Planets and Space, 2008, 60 : 67 - 74