Hardware Implementation of an Event-Based Message Passing Graphical Model Network

被引:0
|
作者
Chien, Chen-Han [1 ,2 ]
Longinotti, Luca [3 ]
Steimer, Andreas [4 ]
Liu, Shih-Chii [1 ,2 ]
机构
[1] Univ Zurich, Inst Neuroinformat, CH-8006 Zurich, Switzerland
[2] Swiss Fed Inst Technol, CH-190 Zurich, Switzerland
[3] Inilabs Ltd, CH-8001 Zurich, Switzerland
[4] Bosch Ctr Artificial Intelligence, D-71272 Renningen, Germany
基金
瑞士国家科学基金会;
关键词
Factor graph; hazard function; random sampling; renewal theory; interspike interval; event-based; spike-based; real-time; DESIGN; INPUTS; NOISE;
D O I
10.1109/TCSI.2018.2798289
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a hardware system that implements a factor graph, where messages are sent using an event-based belief propagation algorithm. The system, comprising an FPGA and an application specific integrated circuit (ASIC) chip, can be used to construct a graph with upto 16 output message channels. The ASIC chip with 16 channels is fabricated in a 0.35 um 2P4M CMOS process and occupies 2.16 x 2.74 mm(2). Each channel dissipates 46 uW. The output analog messages of the channels are encoded through the interspike intervals of the output spike streams or events. The system can be used to implement graphs with arbitrary variable distributions for its inputs and using constraint functions, such as "plus" and "equality". Using Kullback-Leibler divergence, we show that the measured distributions from the implemented graphs on the hardware show close similarity to the theoretical distributions.
引用
收藏
页码:2739 / 2752
页数:14
相关论文
共 50 条
  • [41] An efficient architecture for the implementation of message passing programming model on massive multiprocessor
    Gharsalli, F
    Baghdadi, A
    Bonaciu, M
    Majauskas, G
    Cesario, W
    Jerraya, AA
    15TH IEEE INTERNATIONAL WORKSHOP ON RAPID SYSTEM PROTOTYPING, PROCEEDINGS: SHORTENING THE PATH FROM SPECIFICATION TO PROTOTYPE, 2004, : 80 - 87
  • [42] Always-ON Visual node with a Hardware-Software Event-Based Binarized Neural Network Inference Engine
    Rusci, Manuele
    Rossi, Davide
    Flamand, Eric
    Gottardi, Massimo
    Farella, Elisabetta
    Benini, Luca
    2018 ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS, 2018, : 314 - 319
  • [43] An implementation of the message passing interface over an adaptive peer-to-peer network
    Ni, Lei
    Harwood, Aaron
    HPDC-15: PROCEEDINGS OF THE 15TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE DISTRIBUTED COMPUTING, 2005, : 371 - 372
  • [44] Research on the Prediction System of Event Attendance in an Event-Based Social Network
    Lan, Tianming
    Guo, Lei
    Li, Xiaofei
    Chen, Guangfu
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [45] Who Will Attend? - Predicting Event Attendance in Event-Based Social Network
    Zhang, Xiaomei
    Zhao, Jing
    Cao, Guohong
    2015 16TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT, VOL 1, 2015, : 74 - 83
  • [46] Event-based parareal: A data-flow based implementation of parareal
    Berry, L. A.
    Elwasif, W.
    Reynolds-Barredo, J. M.
    Samaddar, D.
    Sanchez, R.
    Newman, D. E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (17) : 5945 - 5954
  • [47] An event-based model for workflow management systems
    Feng, L
    Lu, HJ
    Lu, Y
    PROCEEDINGS OF SECOND INTERNATIONAL WORKSHOP ON CSCW IN DESIGN, 1997, : 249 - 254
  • [48] An event-based model for the management of choreographed services
    Ardissono, Liliana
    Furnari, Roberto
    Goy, Anna
    Petrone, Giovanna
    Segnan, Marino
    E-COMMERCE AND WEB TECHNOLOGIES, PROCEEDINGS, 2008, 5183 : 51 - 60
  • [49] Event-Based Threat Intelligence Ontology Model
    Wang, Peng
    Dai, Guangxiang
    Zhai, Lidong
    SCIENCE OF CYBER SECURITY, SCISEC 2023, 2023, 14299 : 261 - 282
  • [50] AN EVENT-BASED MULTIPLE MALFUNCTION MODEL - REPLY
    DORRE, P
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 1988, 21 (03) : 241 - 243