Extremely Randomized Forest with Hierarchy of Multi-label Classifiers

被引:0
|
作者
Li, Jinxia [1 ]
Zheng, Yihan [2 ]
Han, Chao [2 ]
Wu, Qingyao [2 ,3 ]
Chen, Jian [2 ]
机构
[1] Hebei Univ Econ & Business, Comp Ctr, Shijiazhuang 300000, Hebei, Peoples R China
[2] South China Univ Technol, Sch Software Engn, Guangzhou 510006, Guangdong, Peoples R China
[3] Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-label classification; Random forest; Hierarchy of classifiers;
D O I
10.1007/978-3-319-67777-4_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hierarchy Of multi-label classifiERs (HOMER) is one of the most popular multi-label classification approaches. However, it is limited in its applicability to large-scale problems due to the high computational complexity when building the hierarchical model. In this paper, we propose a novel approach, called Extremely Randomized Forest with Hierarchy of multi-label classifiers (ERF-H), to effectively construct an ensemble of randomized HOMER trees for multi-label classification. In ERF-H, we randomly chose data samples with replacement from the original dataset for each HOMER tree. We constructed HOMER trees by clustering labels to split each hierarchy of nodes and learns a local multi-label classifier at every node. Extensive experiments show the effectiveness and efficiency of our approach compared to the state-of-the-art multi-label classification methods.
引用
收藏
页码:450 / 460
页数:11
相关论文
共 50 条
  • [31] Multi-Label Feature Selection via Label Enhancement and Analytic Hierarchy Process
    Huang, Jintao
    Qian, Wenbin
    Vong, Chi-Man
    Ding, Weiping
    Shu, Wenhao
    Huang, Qin
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (05): : 1377 - 1393
  • [32] Hierarchical Multi-Label Classification with Partial Labels and Unknown Hierarchy
    Jo, Suhyeon
    Shin, DongHyeok
    Na, Byeonghu
    Jang, JoonHo
    Moon, Il-Chul
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 1025 - 1034
  • [33] Joint Learning of Binary Classifiers and Pairwise Label Correlations for Multi-label Image Classification
    Xiao, Junbin
    Tang, Sheng
    THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2020), 2020, : 25 - 30
  • [34] Generating Ensembles of Multi-Label Classifiers Using Cooperative Coevolutionary Algorithms
    Moyano, Jose M.
    Gibaja, Eva L.
    Cios, Krzysztof J.
    Ventura, Sebastian
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1379 - 1386
  • [35] Review of ensembles of multi-label classifiers: Models, experimental study and prospects
    Moyano, Jose M.
    Gibaja, Eva L.
    Cios, Krzysztof J.
    Ventura, Sebastian
    INFORMATION FUSION, 2018, 44 : 33 - 45
  • [36] Improving Multilabel Classification Performance by Using Ensemble of Multi-label Classifiers
    Tahir, Muhammad Atif
    Kittler, Josef
    Mikolajczyk, Krystian
    Yan, Fei
    MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2010, 5997 : 11 - 21
  • [37] Evaluating multi-label classifiers and recommender systems in the financial service sector
    Bogaert, Matthias
    Lootens, Justine
    Van den Poel, Dirk
    Ballings, Michel
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 279 (02) : 620 - 634
  • [38] A novel framework based on the multi-label classification for dynamic selection of classifiers
    Javad Elmi
    Mahdi Eftekhari
    Adel Mehrpooya
    Mohammad Rezaei Ravari
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 2137 - 2154
  • [39] Multi-label classification with Bayesian network-based chain classifiers
    Sucar, L. Enrique
    Bielza, Concha
    Morales, Eduardo F.
    Hernandez-Leal, Pablo
    Zaragoza, Julio H.
    Larranaga, Pedro
    PATTERN RECOGNITION LETTERS, 2014, 41 : 14 - 22
  • [40] A novel framework based on the multi-label classification for dynamic selection of classifiers
    Elmi, Javad
    Eftekhari, Mahdi
    Mehrpooya, Adel
    Ravari, Mohammad Rezaei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (06) : 2137 - 2154