Extremely Randomized Forest with Hierarchy of Multi-label Classifiers

被引:0
|
作者
Li, Jinxia [1 ]
Zheng, Yihan [2 ]
Han, Chao [2 ]
Wu, Qingyao [2 ,3 ]
Chen, Jian [2 ]
机构
[1] Hebei Univ Econ & Business, Comp Ctr, Shijiazhuang 300000, Hebei, Peoples R China
[2] South China Univ Technol, Sch Software Engn, Guangzhou 510006, Guangdong, Peoples R China
[3] Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-label classification; Random forest; Hierarchy of classifiers;
D O I
10.1007/978-3-319-67777-4_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hierarchy Of multi-label classifiERs (HOMER) is one of the most popular multi-label classification approaches. However, it is limited in its applicability to large-scale problems due to the high computational complexity when building the hierarchical model. In this paper, we propose a novel approach, called Extremely Randomized Forest with Hierarchy of multi-label classifiers (ERF-H), to effectively construct an ensemble of randomized HOMER trees for multi-label classification. In ERF-H, we randomly chose data samples with replacement from the original dataset for each HOMER tree. We constructed HOMER trees by clustering labels to split each hierarchy of nodes and learns a local multi-label classifier at every node. Extensive experiments show the effectiveness and efficiency of our approach compared to the state-of-the-art multi-label classification methods.
引用
收藏
页码:450 / 460
页数:11
相关论文
共 50 条
  • [1] Extremely Randomized CNets for Multi-label Classification
    Basile, Teresa M. A.
    Di Mauro, Nicola
    Esposito, Floriana
    AI*IA 2018 - ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, 11298 : 334 - 347
  • [2] Threshold optimisation for multi-label classifiers
    Pillai, Ignazio
    Fumera, Giorgio
    Roli, Fabio
    PATTERN RECOGNITION, 2013, 46 (07) : 2055 - 2065
  • [3] Measure Optimisation in Multi-label Classifiers
    Pillai, Ignazio
    Fumera, Giorgio
    Roli, Fabio
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2424 - 2427
  • [4] The importance of the label hierarchy in hierarchical multi-label classification
    Jurica Levatić
    Dragi Kocev
    Sašo Džeroski
    Journal of Intelligent Information Systems, 2015, 45 : 247 - 271
  • [5] The importance of the label hierarchy in hierarchical multi-label classification
    Levatic, Jurica
    Kocev, Dragi
    Dzeroski, Saso
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2015, 45 (02) : 247 - 271
  • [6] Comparison of base classifiers for multi-label learning
    Yapp, Edward K. Y.
    Li, Xiang
    Lu, Wen Feng
    Tan, Puay Siew
    NEUROCOMPUTING, 2020, 394 : 51 - 60
  • [7] Characterizing the Evasion Attackability of Multi-label Classifiers
    Yang, Zhuo
    Han, Yufei
    Zhang, Xiangliang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10647 - 10655
  • [8] Fuzzy rule classifiers for multi-label classification
    Prati, Ronaldo C.
    2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [9] Robust Learning of Multi-Label Classifiers under Label Noise
    Kumar, Himanshu
    Manwani, Naresh
    Sastry, P. S.
    PROCEEDINGS OF THE 7TH ACM IKDD CODS AND 25TH COMAD (CODS-COMAD 2020), 2020, : 90 - 97
  • [10] Effects of the hierarchy in hierarchical, multi-label classification
    Daisey, Katie
    Brown, Steven D.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 207