Synthesis of Wafer-Scale Graphene with Chemical Vapor Deposition for Electronic Device Applications

被引:73
|
作者
Sun, Baojun [1 ,2 ]
Pang, Jinbo [1 ]
Cheng, Qilin [1 ]
Zhang, Shu [1 ,3 ]
Li, Yufen [1 ]
Zhang, Congcong [1 ]
Sun, Dehui [1 ]
Ibarlucea, Bergoi [4 ,5 ,6 ]
Li, Yang [7 ]
Chen, Duo [1 ,8 ]
Fan, Huaimin [1 ,2 ]
Han, Qingfang [1 ,2 ]
Chao, Mengxin [1 ,3 ]
Liu, Hong [1 ,9 ]
Wang, Jingang [1 ]
Cuniberti, Gianaurelio [4 ,5 ,6 ]
Han, Lin [10 ]
Zhou, Weijia [1 ]
机构
[1] Univ Jinan, Collaborat Innovat Ctr Technol & Equipment Biol D, Inst Adv Interdisciplinary Res iAIR, Jinan 250022, Shandong, Peoples R China
[2] Univ Jinan, Coll Biol Sci & Technol, Jinan 250022, Shandong, Peoples R China
[3] Univ Jinan, Sch Chem & Chem Engn, Jinan 250022, Shandong, Peoples R China
[4] Tech Univ Dresden, Inst Mat Sci, D-01069 Dresden, Germany
[5] Tech Univ Dresden, Max Bergmann Ctr Biomat, D-01069 Dresden, Germany
[6] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01069 Dresden, Germany
[7] Univ Jinan, Sch Informat Sci & Engn, Jinan 250022, Shandong, Peoples R China
[8] Univ Jinan, Sch Mat Sci & Engn, Jinan 250022, Peoples R China
[9] Shandong Univ, State Key Lab Crystal Mat, Ctr Bio & Micro Nano Funct Mat, 27 Shandanan Rd, Jinan 250100, Peoples R China
[10] Shandong Univ, Inst Marine Sci & Technol, Qingdao 266237, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
chemical vapor deposition; graphene; h‐ BN; integrated circuits; roll to roll; transistors; wafer scale; FEW-LAYER GRAPHENE; HEXAGONAL BORON-NITRIDE; FIELD-EFFECT TRANSISTORS; SINGLE-CRYSTAL GRAPHENE; LARGE-AREA GRAPHENE; NITROGEN-DOPED GRAPHENE; HIGH-QUALITY GRAPHENE; DER-WAALS HETEROSTRUCTURES; CVD-GROWN GRAPHENE; P-N-JUNCTIONS;
D O I
10.1002/admt.202000744
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The first isolation of graphene opens the avenue for new platforms for physics, electronic engineering, and materials sciences. Among several kinds of synthesis approaches, chemical vapor deposition is most promising for the growth at wafer-scale, which is compatible with the Si-based electronic device integration protocols. In this review, the types, properties, and synthesis methods of graphene are first introduced. Many details of wafer-scale graphene synthesis by chemical vapor deposition strategies are given, including the wafer-scale single crystal metal and alloy preparation, roll to roll synthesis over Cu, roll to roll electrochemical transfer technique. Besides, the batch-to-batch synthesis are highlighted for direct graphene over dielectric substrates such as sapphire and Si/SiO2. The electronic transport and transparent conductance of the wafer-scale graphene are compared with high-quality single crystal. The progress and proof-of-the-concept are briefly recalled in graphene-based electronics such as transistors, sensors, integrated circuits, and spin transport valves. Eventually, the readers are provoked with the current challenges as well as the future opportunities.
引用
收藏
页数:79
相关论文
共 50 条
  • [21] Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition
    Changyong Lan
    Ziyao Zhou
    Zhifei Zhou
    Chun Li
    Lei Shu
    Lifan Shen
    Dapan Li
    Ruoting Dong
    SenPo Yip
    Johnny C. Ho
    Nano Research, 2018, 11 : 3371 - 3384
  • [22] Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition
    Lan, Changyong
    Zhou, Ziyao
    Zhou, Zhifei
    Li, Chun
    Shu, Lei
    Shen, Lifan
    Li, Dapan
    Dong, Ruoting
    Yip, SenPo
    Ho, Johnny C.
    NANO RESEARCH, 2018, 11 (06) : 3371 - 3384
  • [23] A minireview on chemical vapor deposition growth of wafer-scale monolayer h-BN single crystals
    Li, Lin
    Zhang, Ye
    Zhang, Ruijie
    Han, Ziyi
    Dong, Huanli
    Yu, Gui
    Geng, Dechao
    Yang, Hui Ying
    NANOSCALE, 2021, 13 (41) : 17310 - 17317
  • [24] Ultraflat Nanopores for Wafer-Scale Molecular-Electronic Applications
    Puebla-Hellmann, Gabriel
    Mayor, Marcel
    Lortscher, Emanuel
    2015 IEEE 15TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2015, : 1197 - 1201
  • [25] Wafer-Scale Graphene Integrated Circuit
    Lin, Yu-Ming
    Valdes-Garcia, Alberto
    Han, Shu-Jen
    Farmer, Damon B.
    Meric, Inanc
    Sun, Yanning
    Wu, Yanqing
    Dimitrakopoulos, Christos
    Grill, Alfred
    Avouris, Phaedon
    Jenkins, Keith A.
    SCIENCE, 2011, 332 (6035) : 1294 - 1297
  • [26] Infrared Spectroscopy of Wafer-Scale Graphene
    Yan, Hugen
    Xia, Fengnian
    Zhu, Wenjuan
    Freitag, Marcus
    Dimitrakopoulos, Christos
    Bol, Ageeth A.
    Tulevski, George
    Avouris, Phaedon
    ACS NANO, 2011, 5 (12) : 9854 - 9860
  • [27] WAFER-SCALE FLEXIBLE GRAPHENE LOUDSPEAKERS
    Tian, He
    Cui, Ya-Long
    Yang, Yi
    Xie, Dan
    Ren, Tian-Ling
    2014 IEEE 27TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2014, : 556 - 559
  • [28] WAFER-SCALE TRANSFER OF GRAPHENE BY ADHESIVE WAFER BONDING
    Quellmalz, Arne
    Wang, Xiaojing
    Wagner, Stefan
    Lemme, Max
    Gylfason, Kristinn B.
    Roxhed, Niclas
    Stemme, Goran
    Niklaus, Frank
    2019 IEEE 32ND INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2019, : 257 - 259
  • [29] Wafer-Scale Growth of Pristine and Doped Monolayer MoS2 Films for Electronic Device Applications
    Wang, Dongsheng
    Zhou, Yue
    Zhang, Hao
    Zhang, Rufan
    Dong, Haoyu
    Xu, Rui
    Cheng, Zhihai
    He, Yuhui
    Wang, Zhiyong
    INORGANIC CHEMISTRY, 2020, 59 (23) : 17356 - 17363
  • [30] Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphene
    Mishra, Neeraj
    Forti, Stiven
    Fabbri, Filippo
    Martini, Leonardo
    McAleese, Clifford
    Conran, Ben R.
    Whelan, Patrick R.
    Shivayogimath, Abhay
    Jessen, Bjarke S.
    Buss, Lars
    Falta, Jens
    Aliaj, Ilirjan
    Roddaro, Stefano
    Flege, Jan I.
    Boggild, Peter
    Teo, Kenneth B. K.
    Coletti, Camilla
    SMALL, 2019, 15 (50)