Unexpected behavior of Caputo fractional derivative

被引:14
|
作者
Bazaglia Kuroda, Lucas Kenjy [1 ]
Gomes, Arianne Vellasco [2 ]
Tavoni, Robinson [1 ]
de Arruda Mancera, Paulo Fernando [1 ]
Varalta, Najla [2 ]
Camargo, Rubens de Figueiredo [3 ]
机构
[1] UNESP, Inst Biociencias, Dept Bioestat, BR-18618689 Botucatu, SP, Brazil
[2] UNESP, Fac Ciencias, Ave Engn Luiz Edmundo Carrijo Coube,14-01, BR-17033360 Bauru, SP, Brazil
[3] UNESP, Dept Matemat, Fac Ciencias, Ave Engn Luiz Edmundo Carrijo Coube,14-01, BR-17033360 Bauru, SP, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2017年 / 36卷 / 03期
关键词
Caputo fractional derivative; Fractional modeling; Fractional calculus; Fractional harmonic oscillator; Fractional logistic equation;
D O I
10.1007/s40314-015-0301-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the modeling via mathematical methods based on fractional calculus, using Caputo fractional derivative. From the fractional models associated with harmonic oscillator, logistic equation and Malthusian growth, an unexpected behavior of the Caputo fractional derivative is discussed. The difference between the rate of variation and the order of the Caputo fractional derivative is explained.
引用
收藏
页码:1173 / 1183
页数:11
相关论文
共 50 条
  • [21] Nonlinear fractional cone systems with the Caputo derivative
    Mozyrska, Dorota
    Girejko, Ewa
    Wyrwas, Malgorzata
    APPLIED MATHEMATICS LETTERS, 2012, 25 (04) : 752 - 756
  • [22] The dynamics of Zika virus with Caputo fractional derivative
    Khan, Muhammad Altaf
    Ullah, Saif
    Farhan, Muhammad
    AIMS MATHEMATICS, 2019, 4 (01): : 134 - 146
  • [23] ON THE FRACTIONAL q-DERIVATIVE OF CAPUTO TYPE
    Stankovic, Miomir S. l
    Rajkovic, Predrag M.
    Marinkovic, Sladjana D.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2010, 63 (02): : 197 - 204
  • [24] A new fractional integral associated with the Caputo–Fabrizio fractional derivative
    M. Moumen Bekkouche
    H. Guebbai
    M. Kurulay
    S. Benmahmoud
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 1277 - 1288
  • [25] On a discrete composition of the fractional integral and Caputo derivative
    Plociniczak, Lukasz
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 108
  • [26] Fractional calculus of variations for a combined Caputo derivative
    Agnieszka B. Malinowska
    Delfim F. M. Torres
    Fractional Calculus and Applied Analysis, 2011, 14 : 523 - 537
  • [27] Abstract differential equations and Caputo fractional derivative
    Carvalho-Neto, P. M.
    SEMIGROUP FORUM, 2022, 104 (03) : 561 - 583
  • [28] New discretization ψ-Caputo fractional derivative and applications
    Pulido, M. Aurora P.
    Sousa, J. Vanterler C.
    de Oliveira, E. Capelas
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 221 : 135 - 158
  • [29] Abstract differential equations and Caputo fractional derivative
    P. M. Carvalho-Neto
    Semigroup Forum, 2022, 104 : 561 - 583
  • [30] Controllability of nonlinear fractional Langevin systems using ?-Caputo fractional derivative
    Prabu, D.
    Kumar, P. Suresh
    Annapoorani, N.
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (01) : 190 - 199