Classification of Web Logs Using Hybrid Functional Link Artificial Neural Networks

被引:0
|
作者
Behera, Ajit Kumar [1 ]
Dash, Ch. Sanjeev Kumar [2 ]
Dehuri, Satchidananda [3 ]
机构
[1] Silicon Inst Technol, Dept Comp Applicat, Silicon Hills, Bhubaneswar 751024, Orissa, India
[2] Silicon Inst Technol, Dept Comp Sci & Engn, Bhubaneswar 751024, Orissa, India
[3] Fakir Mohan Univ, Dept Informat & Commun Technol, Balasore 756019, Odisha, India
关键词
Differential evolution; Functional link artificial neural network; Classification; Web log;
D O I
10.1007/978-3-319-11933-5_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the decades, researchers are striving to understand the web usage pattern of a user and are also extremely important for the owners of a website. In this paper, a hybrid analyzer is proposed to find out the browsing patterns of a user. Moreover, the pattern which is revealed from this surge of web access logs must be useful, motivating, and logical. A smooth functional link artificial neural network has been used to classify the web pages based on access time and region. The accuracy and smoothness of the network is taken birth by suitably tuning the parameters of functional link neural network using differential evolution. In specific, the differential evolution is used to fine tune the weight vector of this hybrid network and some trigonometric functions are used in functional expansion unit. The simulation result shows that the proposed learning mechanism is evidently producing better classification accuracy.
引用
收藏
页码:255 / 263
页数:9
相关论文
共 50 条
  • [31] Automated galaxy classification using artificial neural networks
    Odewahn, SC
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XX, 1997, 3164 : 110 - 119
  • [32] Classification of Electroencephalogram Signals Using Artificial Neural Networks
    Rodrigues, Pedro Miguel
    Teixeira, Joao Paulo
    2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2010), VOLS 1-7, 2010, : 808 - 812
  • [34] Protein loop classification using Artificial Neural Networks
    Vieira, A
    Oliva, B
    ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, PROCEEDINGS, 2005, 3594 : 222 - 225
  • [35] Intelligent Classification of Supernovae Using Artificial Neural Networks
    Brito do Nascimento, Francisca Joamila
    Arantes Filho, Luis Ricardo
    Guimaraes, Nogueira Frutuoso
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2019, 22 (63): : 39 - 60
  • [36] Kannada Dialect Classification using Artificial Neural Networks
    Mothukuri, Siva Krishna P.
    Hegde, Pradyoth
    Chittaragi, Nagaratna B.
    Koolagudi, Shashidhar G.
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2020,
  • [37] Classification of brain tumours using artificial neural networks
    Rao, B. V. Subba
    Kondaveti, Raja
    Prasad, R. V. V. S. V.
    Shanmukha, V.
    Sastry, K. B. S.
    Dasaradharam, Bh.
    ACTA IMEKO, 2022, 11 (01):
  • [38] ECG rhythm classification using artificial neural networks
    Oien, GE
    Bertelsen, NA
    Eftestol, T
    Husoy, JH
    1996 IEEE DIGITAL SIGNAL PROCESSING WORKSHOP, PROCEEDINGS, 1996, : 514 - 517
  • [39] Classification of prostatic cancer using artificial neural networks
    Mattfeldtt, T
    Gottfried, HW
    Burger, M
    Kestler, HA
    FRACTALS IN BIOLOGY AND MEDICINE, VOL III, 2002, : 101 - 111
  • [40] Classification of Cervical Cancer using Artificial Neural Networks
    Devi, M. Anousouya
    Ravi, S.
    Vaishnavi, J.
    Punitha, S.
    TWELFTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2016 / TWELFTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2016 / TWELFTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2016, 2016, 89 : 465 - 472