Low-temperature thermal conductivity of thermoelectric Co1-xMxSi (M = Fe, Ni) alloys

被引:9
|
作者
Ivanov, Y. [1 ]
Levin, A. A. [1 ]
Novikov, S. [1 ]
Pshenay-Severin, D. [1 ]
Volkov, M. [1 ]
Zyuzin, A. [1 ]
Burkov, A. [1 ]
Nakama, T. [2 ]
Schnatmann, L. [3 ]
Reith, H. [3 ]
Nielsch, K. [3 ]
机构
[1] Ioffe Inst, St Petersburg, Russia
[2] Univ Ryukyus, Okinawa, Japan
[3] Leibniz Inst Solid State & Mat Res, Dresden, Germany
基金
俄罗斯基础研究基金会;
关键词
Thermal conductivity; Electrical conductivity; Electron-phonon interaction; Transition metal alloys and compounds; Thermoelectic materials; ULTRASONIC-ATTENUATION; COBALT MONOSILICIDE; TRANSPORT-PROPERTIES; PHONON ATTENUATION; ACOUSTIC-WAVES; ELECTRONS; SEMICONDUCTORS; METALS; CHARGE; SPIN;
D O I
10.1016/j.mtener.2021.100666
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the low-temperature electrical and thermal conductivity of CoSi and Co1-xMxSi alloys (M = Fe, Ni; x <= 0.06). Measurements show that the low-temperature electrical conductivity of Co1-xFexSi alloys decreases at x > 0.01 by an order of magnitude compared with that of pure CoSi. It was expected that both the lattice and electronic contributions to thermal conductivity would decrease in the alloys. However, our experimental results revealed that at temperatures below 20 K, the thermal conductivity of Fe- and Ni-containing alloys is several times larger than that of pure CoSi. We discuss possible mechanisms of the thermal conductivity enhancement. The most probable one is the dominant scattering of phonons by charge carriers. We propose a simple theoretical model that takes into account the complex semimetallic electronic structure of CoSi with nonequivalent charge carrier pockets. This model explains well the increase of the lattice thermal conductivity with increasing disorder and the linear temperature dependence of thermal conductivity in the Co1-xFexSi alloys below 20 K. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] LOW-TEMPERATURE THERMAL CONDUCTIVITY OF FERRIMAGNETIC INSULATORS
    JOSHI, AW
    SINHA, KP
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1966, 88 (561P): : 685 - &
  • [42] LOW-TEMPERATURE THERMAL-CONDUCTIVITY OF GLASSES
    LEADBETTER, AJ
    JEAPES, AP
    WATERFIELD, CG
    MAYNARD, R
    JOURNAL DE PHYSIQUE, 1977, 38 (01): : 95 - 99
  • [43] EFFECT OF ISOTOPES ON LOW-TEMPERATURE THERMAL CONDUCTIVITY
    SLACK, GA
    PHYSICAL REVIEW, 1957, 105 (03): : 829 - 831
  • [44] LOW-TEMPERATURE THERMAL CONDUCTIVITY OF AMORPHOUS SOLIDS
    CHANG, GK
    JONES, RE
    PHYSICAL REVIEW, 1962, 126 (06): : 2055 - &
  • [45] LOW-TEMPERATURE THERMAL-CONDUCTIVITY OF POLYETHYLENE
    BURGESS, S
    GREIG, D
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1975, 8 (11): : 1637 - 1648
  • [46] LOW-TEMPERATURE THERMAL-CONDUCTIVITY OF TMSE
    MARTI, O
    ODONI, W
    OTT, HR
    HELVETICA PHYSICA ACTA, 1983, 56 (04): : 918 - 919
  • [47] THERMAL-CONDUCTIVITY OF IRON AT LOW-TEMPERATURE
    VUILLERMOZ, PL
    PINARD, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1973, 277 (18): : 493 - 495
  • [48] LOW-TEMPERATURE THERMAL-CONDUCTIVITY OF POLYMERS
    GREIG, D
    CRYOGENICS, 1988, 28 (04) : 243 - 247
  • [49] LOW-TEMPERATURE THERMAL CONDUCTIVITY OF URANIUM NITRIDE
    RADOSEVICH, LG
    WILLIAMS, WS
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1969, 52 (09) : 514 - +
  • [50] LOW-TEMPERATURE CRYSTALLIZATION OF THE FE-CO-B AMORPHOUS-ALLOYS
    ZEMCIK, T
    HAVLICEK, S
    HYPERFINE INTERACTIONS, 1991, 69 (1-4): : 673 - 676