Lp RICCI CURVATURE PINCHING THEOREMS FOR CONFORMALLY FLAT RIEMANNIAN MANIFOLDS

被引:25
|
作者
Xu, Hong-Wei [1 ]
Zhao, En-Tao [1 ]
机构
[1] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
基金
中国博士后科学基金;
关键词
conformally flat manifold; rigidity; Ricci curvature tensor; L-p pinching problem; space form; PARALLEL MEAN-CURVATURE; MINIMAL SUBMANIFOLDS; SPACE-FORMS; HYPERSURFACES; SPHERE;
D O I
10.2140/pjm.2010.245.381
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an n-dimensional complete locally conformally flat Riemannian manifold with constant scalar curvature R and n >= 3. We first prove that if R = 0 and the L-n/2 norm of the Ricci curvature tensor of M is pinched in [0, C-1(n)), then M is isometric to a complete flat Riemannian manifold, which improves Pigola, Rigoli, and Setti's pinching theorem. Next, we prove that if n >= 6, R not equal 0, and the L-n/2 norm of the trace-free Ricci curvature tensor of M is pinched in [0; C-2(n)), then M is isometric to a space form. Finally, we prove an L-n trace-free Ricci curvature pinching theorem for complete locally conformally flat Riemannian manifolds with constant nonzero scalar curvature. Here C-1(n) and C-2(n) are explicit positive constants depending only on n.
引用
收藏
页码:381 / 396
页数:16
相关论文
共 50 条