Operator theory in the Hardy space over the bidisk

被引:38
|
作者
Douglas, RG [1 ]
Yang, RW
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Univ Georgia, Dept Math, Athens, Greece
关键词
47B35 (32A35);
D O I
10.1007/BF01200124
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we identify the vector valued Hardy space with the Hardy space over the bidisk and construct a universal model for the contractive analytic functions. We will also study some elementary properties of the submodules and show, in some cases, how the operator theoretical properties are related to the module theoretical properties. The last part focus on the study of double commutativity of compression operators.
引用
收藏
页码:207 / 221
页数:15
相关论文
共 50 条
  • [21] Properties of Compressed Shifts on Beurling Type Quotient Module of Hardy Space Over the Bidisk
    Zhu, S.
    Yang, Y.
    Lu, Y.
    ANALYSIS MATHEMATICA, 2022, 48 (01) : 227 - 248
  • [22] On the Invariant Subspace Problem via Universal Toeplitz Operators on the Hardy Space Over the Bidisk
    do Carmo, Joao Marcos R.
    Ferreira, Marcos S.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (02):
  • [23] Properties of compressed shifts on Beurling type quotient module of Hardy space over the bidisk
    S. Zhu
    Y. Yang
    Y. Lu
    Analysis Mathematica, 2022, 48 : 227 - 248
  • [25] Hilbert spaces contractively included in the Hardy space of the bidisk
    Alpay, D
    Bolotnikov, V
    Dijksma, A
    Rovnyak, J
    Sadosky, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (12): : 1365 - 1370
  • [26] Hilbert Spaces Contractively Included in the Hardy Space of the Bidisk
    D. Alpay
    V. Bolotnikov
    A. Dijksma
    C. Sadosky
    Positivity, 2001, 5 : 25 - 50
  • [27] Commuting Hankel and Toeplitz Operators on the Hardy Space of the Bidisk
    Yu Feng LU Bo ZHANG School of Mathematical Science Dalian University of Technology Liaoning P R China
    数学研究与评论, 2010, 30 (02) : 205 - 216
  • [28] Hilbert spaces contractively included in the Hardy space of the bidisk
    Alpay, D
    Bolotnikov, V
    Dijksma, A
    Sadosky, C
    POSITIVITY, 2001, 5 (01) : 25 - 50
  • [29] Beurling type theorem on the Bergman space via the Hardy space of the bidisk
    ShunHua Sun
    DeChao Zheng
    Science in China Series A: Mathematics, 2009, 52 : 2517 - 2529
  • [30] Beurling type theorem on the Bergman space via the Hardy space of the bidisk
    Sun ShunHua
    Zheng DeChao
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (11): : 2517 - 2529