In situ identification of environmental microorganisms with Raman spectroscopy

被引:35
|
作者
Cui, Dongyu [1 ,2 ]
Kong, Lingchao [3 ]
Wang, Yi [1 ,2 ]
Zhu, Yuanqing [2 ,5 ]
Zhang, Chuanlun [1 ,2 ,4 ,5 ]
机构
[1] Southern Marine Sci & Engn Guangdong Lab Guangzhou, Guangzhou 511458, Peoples R China
[2] Southern Univ Sci & Technol, Dept Ocean Sci & Engn, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Sch Environm Sci & Engn, State Environm Protect Key Lab Integrated Surface, Shenzhen 518055, Peoples R China
[4] Univ Southern Univ Sci & Technol, Shenzhen Key Lab Marine Archaea Geo Omics, Shenzhen 518055, Peoples R China
[5] Shanghai Earthquake Agcy, Shanghai Sheshan Natl Geophys Observ, Shanghai 200062, Peoples R China
来源
ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY | 2022年 / 11卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Raman spectroscopy; Environmental microorganisms; Single cells; Metabolic activities; SINGLE-CELL RAMAN; RELEVANT MICROORGANISMS; HYBRIDIZATION FISH; BACTERIAL-CELLS; SPECTRA; TOOL; MICROSPECTROSCOPY; METABOLOMICS; TISSUE; RNA;
D O I
10.1016/j.ese.2022.100187
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microorganisms in natural environments are crucial in maintaining the material and energy cycle and the ecological balance of the environment. However, it is challenging to delineate environmental microbes' actual metabolic pathways and intraspecific heterogeneity because most microorganisms cannot be cultivated. Raman spectroscopy is a culture-independent technique that can collect molecular vibration profiles from cells. It can reveal the physiological and biochemical information at the single-cell level rapidly and non-destructively in situ. The first part of this review introduces the principles, advantages, progress, and analytical methods of Raman spectroscopy applied in environmental microbiology. The second part summarizes the applications of Raman spectroscopy combined with stable isotope probing (SIP), fluorescence in situ hybridization (FISH), Raman-activated cell sorting and genomic sequencing, and machine learning in microbiological studies. Finally, this review discusses expectations of Raman spectroscopy and future advances to be made in identifying microorganisms, especially for uncultured microorganisms. (c) 2022 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:12
相关论文
共 50 条
  • [31] In situ identification of TATP and DADP particles collected with transparent tape by Raman spectroscopy and imaging
    Sun, Zhenwen
    Zhang, Guannan
    Li, Yonggang
    Qiao, Ting
    Liu, Zhanfang
    Wang, Ping
    Li, Guangyao
    Zhou, Zheng
    Zheng, Jili
    Li, Yajun
    Zhu, Jun
    Liu, Yao
    ANALYTICAL METHODS, 2021, 13 (43) : 5173 - 5178
  • [32] In situ defect quantification and phase identification during ash sintering using Raman spectroscopy
    Murray, Shannon E.
    Lv, Guangxin
    Sulekar, Soumitra S.
    Cahill, David G.
    Shoemaker, Daniel P.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2021, 104 (08) : 3873 - 3882
  • [33] Micro-Raman Spectroscopic Identification of Pathogenic Microorganisms
    Roesch, Petra
    Stoeckel, Stephan
    Meisel, Susann
    Bossecker, Anja
    Schumacher, Wilm
    Popp, Juergen
    XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY, 2010, 1267 : 396 - 397
  • [34] Identification of medically relevant microorganisms by vibrational spectroscopy
    Maquelin, K
    Kirschner, C
    Choo-Smith, LP
    van den Braak, N
    Endtz, HP
    Naumann, D
    Puppels, GJ
    JOURNAL OF MICROBIOLOGICAL METHODS, 2002, 51 (03) : 255 - 271
  • [35] Infrared spectroscopy for Identification of pathogenic Microorganisms.
    Rau, Joerg
    Horlacher, Sabine
    Kuhm, Andrea
    DEUTSCHE LEBENSMITTEL-RUNDSCHAU, 2010, 106 : 17 - 19
  • [36] Infrared Spectroscopy of Microorganisms: Characterization, Identification, and Differentiation
    Carter, E. A.
    Marshall, C. P.
    Ali, M. H. M.
    Ganendren, R.
    Sorrell, T. C.
    Wright, L.
    Lee, Y. -C.
    Chen, C. -I.
    Lay, P. A.
    NEW APPROACHES IN BIOMEDICAL SPECTROSCOPY, 2007, 963 : 64 - 84
  • [37] Raman spectroscopy for forensic semen identification: Method validation vs. environmental interferences
    Casey, Taylor
    Mistek, Ewelina
    Halamkova, Lenka
    Lednev, Igor K.
    VIBRATIONAL SPECTROSCOPY, 2020, 109 (109)
  • [38] Raman spectroscopy for forensic bloodstain identification: Method validation vs. environmental interferences
    Rosenblatt, Robert
    Halamkova, Lenka
    Doty, Kyle C.
    de Oliveira, Emanuel A. C., Jr.
    Lednev, Igor K.
    FORENSIC CHEMISTRY, 2019, 16
  • [39] Agricultural and Environmental Management with Raman Spectroscopy
    Tucker, Stephanie C.
    Kast, Rachel E.
    Honn, Kenneth V.
    Auner, Gregory W.
    SPECTROSCOPY, 2015, 30 (09) : 47 - 53
  • [40] Multi-point scanning confocal Raman spectroscopy for accurate identification of microorganisms at the single-cell level
    Wang, Yu
    Peng, Hao
    Liu, Kunxiang
    Shang, Lindong
    Xu, Lei
    Lu, Zhenming
    Li, Bei
    TALANTA, 2023, 254