Binarization of feature representation is critical for Binarized Neural Networks (BNNs). Currently, sign function is the commonly used method for feature binarization. Although it works well on small datasets, the performance on ImageNet remains unsatisfied. Previous methods mainly focus on minimizing quantization error, improving the training strategies and decomposing each convolution layer into several binary convolution modules. However, whether sign is the only option for binarization has been largely overlooked. In this work, we propose the Sparsity-inducing Binarized Neural Network (Si-BNN), to quantize the activations to be either 0 or +1, which introduces sparsity into binary representation. We further introduce trainable thresholds into the backward function of binarization to guide the gradient propagation. Our method dramatically outperforms current state-of-the-arts, lowering the performance gap between full-precision networks and BNNs on mainstream architectures, achieving the new state-of-the-art on binarized AlexNet (Top-1 50.5%), ResNet-18 (Top-1 59.7%), and VGG-Net (Top-1 63.2%). At inference time, Si-BNN still enjoys the high efficiency of exclusive-not-or (xnor) operations.
机构:
Univ Tehran Med Sci, Med Phys & Biomed Engn Dept, Sch Med, Tehran 1417613151, Iran
Univ Tehran Med Sci, Res Ctr Mol & Cellular Imaging, Bioopt Imaging Grp, Imam Khomeini Hosp, Keshavarz Blvd, Tehran 1417613151, IranUniv Tehran Med Sci, Med Phys & Biomed Engn Dept, Sch Med, Tehran 1417613151, Iran
Hejazi, Sedigheh Marjaneh
Sarkar, Saeed
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tehran Med Sci, Med Phys & Biomed Engn Dept, Sch Med, Tehran 1417613151, Iran
Univ Tehran Med Sci, Res Ctr Sci & Technol Med, Imam Khomeini Hosp, Keshavarz Blvd, Tehran 1417613151, IranUniv Tehran Med Sci, Med Phys & Biomed Engn Dept, Sch Med, Tehran 1417613151, Iran
Sarkar, Saeed
Darezereshki, Ziba
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tehran Med Sci, Med Phys & Biomed Engn Dept, Sch Med, Tehran 1417613151, IranUniv Tehran Med Sci, Med Phys & Biomed Engn Dept, Sch Med, Tehran 1417613151, Iran
机构:
City Univ Hong Kong, Dept Elect Engn, Hong Kong 999077, Peoples R ChinaCity Univ Hong Kong, Dept Elect Engn, Hong Kong 999077, Peoples R China
Wang, Zhi-Yong
So, Hing Cheung
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Elect Engn, Hong Kong 999077, Peoples R China
City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 999077, Peoples R ChinaCity Univ Hong Kong, Dept Elect Engn, Hong Kong 999077, Peoples R China
So, Hing Cheung
Zoubir, Abdelhak M.
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Darmstadt, Signal Proc Grp, D-64283 Darmstadt, GermanyCity Univ Hong Kong, Dept Elect Engn, Hong Kong 999077, Peoples R China
机构:
Kookmin Univ, Sch Elect Engn, Seoul, South KoreaKookmin Univ, Sch Elect Engn, Seoul, South Korea
Khoa Van Pham
Tien Van Nguyen
论文数: 0引用数: 0
h-index: 0
机构:
Kookmin Univ, Sch Elect Engn, Seoul, South KoreaKookmin Univ, Sch Elect Engn, Seoul, South Korea
Tien Van Nguyen
Son Bao Tran
论文数: 0引用数: 0
h-index: 0
机构:
Kookmin Univ, Sch Elect Engn, Seoul, South KoreaKookmin Univ, Sch Elect Engn, Seoul, South Korea
Son Bao Tran
Nam, Hyunkyung
论文数: 0引用数: 0
h-index: 0
机构:
Kookmin Univ, Sch Elect Engn, Seoul, South KoreaKookmin Univ, Sch Elect Engn, Seoul, South Korea
Nam, Hyunkyung
Lee, Mi Jung
论文数: 0引用数: 0
h-index: 0
机构:
Kookmin Univ, Sch Adv Mat Engn, Seoul, South KoreaKookmin Univ, Sch Elect Engn, Seoul, South Korea
Lee, Mi Jung
论文数: 引用数:
h-index:
机构:
Choi, Byung Joon
Son Ngoc Truong
论文数: 0引用数: 0
h-index: 0
机构:
Kookmin Univ, Sch Elect Engn, Seoul, South Korea
Ho Chi Minh City Univ Technol & Educ, Fac Elect & Elect Engn, Ho Chi Minh City, VietnamKookmin Univ, Sch Elect Engn, Seoul, South Korea