Ergodic schrodinger operators (on one foot)

被引:0
|
作者
Jitomirskaya, Svetlana
机构
关键词
anderson model; quasiperiodic; localization; absolutely continuous spectrum;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review several topics related to two most popular ergodic families: the Anderson model and quasiperiodic Schrodinger operators.
引用
收藏
页码:613 / 647
页数:35
相关论文
共 50 条
  • [21] Global theory of one-frequency Schrodinger operators
    Avila, Artur
    ACTA MATHEMATICA, 2015, 215 (01) : 1 - 54
  • [22] One-Dimensional Schrodinger Operators with Complex Potentials
    Derezinski, Jan
    Georgescu, Vladimir
    ANNALES HENRI POINCARE, 2020, 21 (06): : 1947 - 2008
  • [23] Lyapunov exponents and spectral analysis of ergodic schrodinger operators: A survey of kotani theory and its applications
    Damanik, David
    SPECTRAL THEORY AND MATHEMATICAL PHYSICS: A FESTSCHRIFT IN HONOR OF BARRY SIMON'S 60TH BIRTHDAY: ERGODIC SCHRODINGER OPERATORS, SINGULAR SPECTRUM, ORTHOGONAL POLYNOMIALS, AND INVERSE SPECTRAL THEORY, 2007, 76 : 539 - 563
  • [24] Operators with an ergodic power
    Bermúdez, T
    González, M
    Mbekhta, M
    STUDIA MATHEMATICA, 2000, 141 (03) : 201 - 208
  • [25] On Mean Ergodic Operators
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    VECTOR MEASURES, INTEGRATION AND RELATED TOPICS, 2010, 201 : 1 - +
  • [26] ONE-DIMENSIONAL SCHRODINGER OPERATORS WITH GENERAL POINT INTERACTIONS
    Brasche, J. F.
    Nizhnik, L. P.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2013, 19 (01): : 4 - 15
  • [27] ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH RANDOM POTENTIALS
    CARMONA, R
    PHYSICA A, 1984, 124 (1-3): : 181 - 187
  • [28] Generalized Floquet theory for stationary Schrodinger operators in one dimension
    Osaka Univ, Osaka, Japan
    Chaos Solitons Fractals, 11 (1817-1854):
  • [29] One-Point Commuting Difference Operators of Rank One and Their Relation with Finite-Gap Schrodinger Operators
    Mauleshova, G. S.
    Mironov, A. E.
    DOKLADY MATHEMATICS, 2018, 97 (01) : 62 - 64
  • [30] Ballistic Transport for One-Dimensional Quasiperiodic Schrodinger Operators
    Ge, Lingrui
    Kachkovskiy, Ilya
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (10) : 2577 - 2612