Fast and automatic object pose estimation for range images on the GPU

被引:25
|
作者
Park, In Kyu [1 ]
Germann, Marcel [2 ]
Breitenstein, Michael D. [3 ]
Pfister, Hanspeter [4 ]
机构
[1] Inha Univ, Sch Informat & Commun Engn, Inchon 402751, South Korea
[2] ETH, Swiss Fed Inst Technol, Comp Graph Lab, CH-8092 Zurich, Switzerland
[3] ETH, Swiss Fed Inst Technol, Comp Vis Lab, CH-8092 Zurich, Switzerland
[4] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
Object pose estimation; Bin picking; Range image processing; General purpose GPU programming; Iterative closest point; Euclidean distance transform; Downhill simplex; CUDA; RECOGNITION; REGISTRATION; MODEL; SEGMENTATION;
D O I
10.1007/s00138-009-0209-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a pose estimation method for rigid objects from single range images. Using 3D models of the objects, many pose hypotheses are compared in a data-parallel version of the downhill simplex algorithm with an image-based error function. The pose hypothesis with the lowest error value yields the pose estimation (location and orientation), which is refined using ICP. The algorithm is designed especially for implementation on the GPU. It is completely automatic, fast, robust to occlusion and cluttered scenes, and scales with the number of different object types. We apply the system to bin picking, and evaluate it on cluttered scenes. Comprehensive experiments on challenging synthetic and real-world data demonstrate the effectiveness of our method.
引用
收藏
页码:749 / 766
页数:18
相关论文
共 50 条
  • [41] Automatic object detection employing viewing angle histogram for range images
    Chen, Liang-Chia
    Xuan-Loc Nguyen
    Lin, Shyh-Tsong
    2012 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2012, : 196 - 201
  • [42] Fast object recognition and pose determination
    Sengel, M
    Berger, M
    Kravtchenko-Berejnoi, VK
    Bischof, H
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 349 - 352
  • [43] Real-time face pose estimation from single range images
    Breitenstein, Michael D.
    Kuettel, Daniel
    Weise, Thibaut
    van Gool, Luc
    Pfister, Hanspeter
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 3613 - +
  • [44] FAST MOTION ESTIMATION FOR HEVC WITH ADAPTIVE SEARCH RANGE DECISION ON CPU AND GPU
    Kim, Sangmin
    Lee, Dong-Kyu
    Sohn, Chae-Bong
    Oh, Seoung-Jun
    2014 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (CHINASIP), 2014, : 349 - 353
  • [45] Fast Human Pose Estimation
    Zhang, Feng
    Zhu, Xiatian
    Ye, Mao
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3512 - 3521
  • [46] Wide-Depth-Range 6D Object Pose Estimation in Space
    Hu, Yinlin
    Speierer, Sebastien
    Jakob, Wenzel
    Fua, Pascal
    Salzmann, Mathieu
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 15865 - 15874
  • [47] 6D object pose estimation for low-quality rendering images
    Zuo G.-Y.
    Zhang C.-W.
    Liu H.-X.
    Gong D.-X.
    Kongzhi yu Juece/Control and Decision, 2021, 37 (01): : 135 - 141
  • [48] 6D Object Pose Estimation in Cluttered Scenes from RGB Images
    Xiao-Long Yang
    Xiao-Hong Jia
    Yuan Liang
    Lu-Bin Fan
    Journal of Computer Science and Technology, 2022, 37 : 719 - 730
  • [49] Corn pose estimation using 3D object detection and stereo images
    Gao, Yuliang
    Li, Zhen
    Hong, Qingqing
    Li, Bin
    Zhang, Lifeng
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2025, 231
  • [50] Disturbance-rejecting method for cooperative object pose estimation from binocular images
    Shang, Y
    Yu, QF
    Lei, ZH
    Li, LC
    COMPUTER GRAPHICS, IMAGING AND VISION: NEW TRENDS, 2005, : 127 - 130