Climate change and the global malaria recession

被引:240
|
作者
Gething, Peter W. [1 ]
Smith, David L. [2 ,3 ]
Patil, Anand P. [1 ]
Tatem, Andrew J. [2 ,4 ]
Snow, Robert W. [5 ,6 ]
Hay, Simon I. [1 ]
机构
[1] Univ Oxford, Dept Zool, Spatial Ecol & Epidemiol Grp, Oxford OX1 3PS, England
[2] Univ Florida, Emerging Pathogens Inst, Gainesville, FL 32610 USA
[3] Univ Florida, Dept Biol, Gainesville, FL 32610 USA
[4] Univ Florida, Dept Geog, Gainesville, FL 32611 USA
[5] KEMRI Univ Oxford Wellcome Trust Collaborat Progr, Malaria Publ Hlth & Epidemiol Grp, Ctr Geog Med, Nairobi, Kenya
[6] Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med, CCVTM, Oxford OX3 7LJ, England
基金
英国惠康基金; 美国国家卫生研究院;
关键词
INSECTICIDE-TREATED NETS; COMBINATION THERAPY; INOCULATION RATE; TRANSMISSION; IMPACT; POPULATIONS; ELIMINATION; INFECTION; AFRICA; BURDEN;
D O I
10.1038/nature09098
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The current and potential future impact of climate change on malaria is of major public health interest(1,2). The proposed effects of rising global temperatures on the future spread and intensification of the disease(3-5), and on existing malaria morbidity and mortality rates(3), substantively influence global health policy(6,7). The contemporary spatial limits of Plasmodium falciparum malaria and its endemicity within this range(8), when compared with comparable historical maps, offer unique insights into the changing global epidemiology of malaria over the last century. It has long been known that the range of malaria has contracted through a century of economic development and disease control(9). Here, for the first time, we quantify this contraction and the global decreases in malaria endemicity since approximately 1900. We compare the magnitude of these changes to the size of effects on malaria endemicity proposed under future climate scenarios and associated with widely used public health interventions. Our findings have two key and often ignored implications with respect to climate change and malaria. First, widespread claims that rising mean temperatures have already led to increases in worldwide malaria morbidity and mortality are largely at odds with observed decreasing global trends in both its endemicity and geographic extent. Second, the proposed future effects of rising temperatures on endemicity are at least one order of magnitude smaller than changes observed since about 1900 and up to two orders of magnitude smaller than those that can be achieved by the effective scale-up of key control measures. Predictions of an intensification of malaria in a warmer world, based on extrapolated empirical relationships or biological mechanisms, must be set against a context of a century of warming that has seen marked global declines in the disease and a substantial weakening of the global correlation between malaria endemicity and climate.
引用
收藏
页码:342 / U94
页数:5
相关论文
共 50 条
  • [21] Global climate change
    Grassl, H
    INTERDISCIPLINARY SCIENCE REVIEWS, 1999, 24 (03) : 185 - 194
  • [22] Global climate change
    不详
    JOURNAL OF FORESTRY, 2008, 106 (03) : 125 - 171
  • [23] Global climate change
    Michaelowa, A
    CLIMATE POLICY, 2005, 4 (03) : 341 - 344
  • [24] GLOBAL CLIMATE CHANGE
    不详
    GEOTIMES, 1989, 34 (08): : 8 - 9
  • [25] Global climate change
    Jackson, Nancy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [26] GLOBAL CLIMATE CHANGE
    MACDONALD, GJ
    ISSUES IN SCIENCE AND TECHNOLOGY, 1987, 3 (04) : 8 - 8
  • [27] GLOBAL CLIMATE CHANGE
    HAMMERLE, RH
    SHILLER, JW
    SCHWARZ, MJ
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 1991, 113 (03): : 448 - 455
  • [28] GLOBAL CLIMATE CHANGE
    HERRMANN, R
    WATER RESOURCES BULLETIN, 1988, 24 (03): : R3 - R4
  • [29] Global climate change
    J. For., 2009, 2 (60):
  • [30] GLOBAL CLIMATE CHANGE
    GALL, GAE
    KREITH, M
    STATON, M
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 1992, 42 (1-2) : 93 - 100