Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method

被引:47
|
作者
Sun, Jun [1 ]
Zhao, Ji [1 ]
Wu, Xiaojun [1 ]
Fang, Wei [1 ]
Cai, Yujie [2 ]
Xu, Wenbo [1 ]
机构
[1] Jiangnan Univ, Sch Informat Technol, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch Biotechnol, Key Lab Ind Biotechnol, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaotic systems; Parameter estimation; Global optimization; Particle Swarm Optimization; Drift motion; IDENTIFICATION;
D O I
10.1016/j.physleta.2010.04.071
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Inspired by the motion of electrons in metal conductors in an electric field, we propose a variant of Particle Swarm Optimization (PSO), called Drift Particle Swarm Optimization (DPSO) algorithm, and apply it in estimating the unknown parameters of chaotic dynamic systems. The principle and procedure of DPSO are presented, and the algorithm is used to identify Lorenz system and Chen system. The experiment results show that for the given parameter configurations, DPSO can identify the parameters of the systems accurately and effectively, and it may be a promising tool for chaotic system identification as well as other numerical optimization problems in physics. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2816 / 2822
页数:7
相关论文
共 50 条
  • [41] Application of particle swarm optimization to the estimation of the TSInSAR deformation parameter
    Xue, Feiyang
    Lv, Xiaolei
    Chai, Huiming
    Huang, Huibao
    REMOTE SENSING LETTERS, 2019, 10 (08) : 756 - 765
  • [42] Parallel Particle Swarm Optimization on Chaotic Solutions of Dynamical Systems
    Gotthans, Tomas
    Petrzela, Jiri
    Hrubos, Zdenek
    Baudoin, Genevieve
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE - RADIOELEKTRONIKA 2012, 2012, : 89 - 92
  • [43] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Ouyang, Aijia
    Li, Kenli
    Tung Khac Truong
    Sallam, Ahmed
    Sha, Edwin H-M.
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1785 - 1799
  • [44] APPLICATION OF PARTICLE SWARM OPTIMIZATION FOR PARAMETER ESTIMATION OF THE LOGISTIC MAP
    Sheludko, A. S.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (03):
  • [45] A Improved Particle Swarm optimization and Its Application in the Parameter Estimation
    Wu Tiebin
    Cheng Yun
    Hu Zhikun
    Zhou Taoyun
    Liu Yunlian
    MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1150 - +
  • [46] Tuning fuzzy systems parameters with chaotic particle swarm optimization
    Hodashinsky, I. A.
    Bardamova, M. B.
    INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGIES IN BUSINESS AND INDUSTRY 2016, 2017, 803
  • [47] Chaotic particle swarm optimization method exploiting sinusoidal perturbations
    Tatsumi, Keiji
    Sasaki, Syuhei
    Tanino, Tetsuzo
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 3074 - +
  • [48] The robustness optimization of parameter estimation in chaotic control systems
    Xu, Zhen
    Journal of Engineering Science and Technology Review, 2015, 8 (02) : 61 - 67
  • [49] Random drift particle swarm optimization algorithm: convergence analysis and parameter selection
    Jun Sun
    Xiaojun Wu
    Vasile Palade
    Wei Fang
    Yuhui Shi
    Machine Learning, 2015, 101 : 345 - 376
  • [50] Random drift particle swarm optimization algorithm: convergence analysis and parameter selection
    Sun, Jun
    Wu, Xiaojun
    Palade, Vasile
    Fang, Wei
    Shi, Yuhui
    MACHINE LEARNING, 2015, 101 (1-3) : 345 - 376