An Introduction to Deep Learning Research for Alzheimer's Disease

被引:6
|
作者
Nguyen, Hoang [1 ]
Chu, Narisa N. [2 ]
机构
[1] Univ Missouri, Kansas City, MO 64110 USA
[2] CWLab Int, Kansas City, MO USA
关键词
Deep learning; Two dimensional displays; Diseases; Three-dimensional displays; Feature extraction; Alzheimer's disease; Medical sevices; Tutorials; DEVICE;
D O I
10.1109/MCE.2020.3048254
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This tutorial explains the evolving approaches on deep learning (DL) modeling and their dependence on statistically comprehensive datasets as input in various brain scan neuroimages. Powerful visual modalities, e.g., magnetic resonance images and positron emission tomography, can show neural changes during Alzheimer's disease (AD) development. Computer vision's recent success has lent impetus to numerous DL modeling publications reporting accuracy above 90%, using AD NeuroImage (ADNI) datasets. However, several limitations exist when using DL for AD image interpretation. Due to the lack of a comprehensive dataset and medical images' complexity, there is little to no clinical value in such DL approaches. Furthermore, many of the published research results in the field are not comparable in experimenting with the ADNI datasets without well-accepted evaluation criteria. This tutorial describes the fundamentals and gaps in applying DL methodology over ADNI datasets.
引用
收藏
页码:72 / 74
页数:3
相关论文
共 50 条
  • [21] Hybridized Deep Learning Approach for Detecting Alzheimer's Disease
    Balaji, Prasanalakshmi
    Chaurasia, Mousmi Ajay
    Bilfaqih, Syeda Meraj
    Muniasamy, Anandhavalli
    Alsid, Linda Elzubir Gasm
    BIOMEDICINES, 2023, 11 (01)
  • [22] A review of the application of deep learning in the detection of Alzheimer's disease
    Gao S.
    Lima D.
    International Journal of Cognitive Computing in Engineering, 2022, 3 : 1 - 8
  • [23] Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review
    Malik, Isra
    Iqbal, Ahmed
    Gu, Yeong Hyeon
    Al-antari, Mugahed A.
    DIAGNOSTICS, 2024, 14 (12)
  • [24] Multimodal deep learning for Alzheimer’s disease dementia assessment
    Shangran Qiu
    Matthew I. Miller
    Prajakta S. Joshi
    Joyce C. Lee
    Chonghua Xue
    Yunruo Ni
    Yuwei Wang
    Ileana De Anda-Duran
    Phillip H. Hwang
    Justin A. Cramer
    Brigid C. Dwyer
    Honglin Hao
    Michelle C. Kaku
    Sachin Kedar
    Peter H. Lee
    Asim Z. Mian
    Daniel L. Murman
    Sarah O’Shea
    Aaron B. Paul
    Marie-Helene Saint-Hilaire
    E. Alton Sartor
    Aneeta R. Saxena
    Ludy C. Shih
    Juan E. Small
    Maximilian J. Smith
    Arun Swaminathan
    Courtney E. Takahashi
    Olga Taraschenko
    Hui You
    Jing Yuan
    Yan Zhou
    Shuhan Zhu
    Michael L. Alosco
    Jesse Mez
    Thor D. Stein
    Kathleen L. Poston
    Rhoda Au
    Vijaya B. Kolachalama
    Nature Communications, 13
  • [25] Deep Learning Approach for Early Detection of Alzheimer's Disease
    Helaly, Hadeer A.
    Badawy, Mahmoud
    Haikal, Amira Y.
    COGNITIVE COMPUTATION, 2022, 14 (05) : 1711 - 1727
  • [26] Application of Deep Learning in Classification and Diagnosis of Alzheimer’s Disease
    Du, Yuzheng
    Cao, Hui
    Nie, Yongqi
    Wei, Dejian
    Feng, Yanyan
    Computer Engineering and Applications, 2024, 59 (03) : 49 - 65
  • [27] Ensemble deep learning for Alzheimer’s disease characterization and estimation
    M. Tanveer
    T. Goel
    R. Sharma
    A. K. Malik
    I. Beheshti
    J. Del Ser
    P. N. Suganthan
    C. T. Lin
    Nature Mental Health, 2024, 2 (6): : 655 - 667
  • [28] Deep Learning-Based Diagnosis of Alzheimer's Disease
    Saleem, Tausifa Jan
    Zahra, Syed Rameem
    Wu, Fan
    Alwakeel, Ahmed
    Alwakeel, Mohammed
    Jeribi, Fathe
    Hijji, Mohammad
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (05):
  • [29] Alzheimer's disease - Introduction
    Bennett, DA
    DM DISEASE-A-MONTH, 2000, 46 (11): : 729 - 729
  • [30] Alzheimer's disease - Introduction
    Bennett, DA
    DM DISEASE-A-MONTH, 2000, 46 (10): : 654 - 656