Interpretation of allele-specific chromatin accessibility using cell state-aware deep learning

被引:24
|
作者
Atak, Zeynep Kalender [1 ,2 ,5 ]
Taskiran, Ibrahim Ihsan [1 ,2 ]
Demeulemeester, Jonas [1 ,2 ,3 ]
Flerin, Christopher [1 ,2 ]
Mauduit, David [1 ,2 ]
Minnoye, Liesbeth [1 ,2 ]
Hulselmans, Gert [1 ,2 ]
Christiaens, Valerie [1 ,2 ]
Ghanem, Ghanem-Elias [4 ]
Wouters, Jasper [1 ,2 ]
Aerts, Stein [1 ,2 ]
机构
[1] VIB KU Leuven Ctr Brain & Dis Res, B-3000 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Human Genet, B-3000 Leuven, Belgium
[3] Francis Crick Inst, Canc Genom Lab, London NW1 1AT, England
[4] Univ Libre Bruxelles, Inst Jules Bordet, B-1000 Brussels, Belgium
[5] Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge CB2 0RE, England
基金
欧洲研究理事会;
关键词
TERT PROMOTER MUTATIONS; FACTOR-DNA-BINDING; REGULATORY ELEMENTS; EXPRESSION; TRANSCRIPTION; VARIANTS; IDENTIFICATION; ZEB; ARCHITECTURE; NETWORK;
D O I
10.1101/gr.260851.120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genomic sequence variation within enhancers and promoters can have a significant impact on the cellular state and phenotype. However, sifting through the millions of candidate variants in a personal genome or a cancer genome, to identify those that impact cis-regulatory function, remains a major challenge. Interpretation of noncoding genome variation benefits from explainable artificial intelligence to predict and interpret the impact of a mutation on gene regulation. Here we generate phased whole genomes with matched chromatin accessibility, histone modifications, and gene expression for 10 melanoma cell lines. We find that training a specialized deep learning model, called DeepMEL2, on melanoma chromatin accessibility data can capture the various regulatory programs of the melanocytic and mesenchymal-like melanoma cell states. This model outperforms motif-based variant scoring, as well as more generic deep learning models. We detect hundreds to thousands of allele-specific chromatin accessibility variants (ASCAVs) in each melanoma genome, of which 15%-20% can be explained by gains or losses of transcription factor binding sites. A considerable fraction of ASCAVs are caused by changes in AP-1 binding, as confirmed by matched ChIP-seq data to identify allele-specific binding of JUN and FOSL1. Finally, by augmenting the DeepMEL2 model with ChIP-seq data for GABPA, the TERT promoter mutation, as well as additional ETS motif gains, can be identified with high confidence. In conclusion, we present a new integrative genomics approach and a deep learning model to identify and interpret functional enhancer mutations with allelic imbalance of chromatin accessibility and gene expression.
引用
收藏
页码:1082 / 1096
页数:16
相关论文
共 50 条
  • [21] Learning single-cell chromatin accessibility profiles using meta-analytic marker genes
    Kawaguchi, Risa Karakida
    Tang, Ziqi
    Fischer, Stephan
    Rajesh, Chandana
    Tripathy, Rohit
    Koo, Peter K.
    Gillis, Jesse
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [22] Single-cell chromatin accessibility identifies pancreatic islet cell type– and state-specific regulatory programs of diabetes risk
    Joshua Chiou
    Chun Zeng
    Zhang Cheng
    Jee Yun Han
    Michael Schlichting
    Michael Miller
    Robert Mendez
    Serina Huang
    Jinzhao Wang
    Yinghui Sui
    Allison Deogaygay
    Mei-Lin Okino
    Yunjiang Qiu
    Ying Sun
    Parul Kudtarkar
    Rongxin Fang
    Sebastian Preissl
    Maike Sander
    David U. Gorkin
    Kyle J. Gaulton
    Nature Genetics, 2021, 53 : 455 - 466
  • [23] DeepLUCIA: predicting tissue-specific chromatin loops using Deep Learning-based Universal Chromatin Interaction Annotator
    Yang, Dongchan
    Chung, Taesu
    Kim, Dongsup
    BIOINFORMATICS, 2022, 38 (14) : 3501 - 3512
  • [24] Single-cell chromatin accessibility identifies pancreatic islet cell type- and state-specific regulatory programs of diabetes risk
    Chiou, Joshua
    Zeng, Chun
    Cheng, Zhang
    Han, Jee Yun
    Schlichting, Michael
    Miller, Michael
    Mendez, Robert
    Huang, Serina
    Wang, Jinzhao
    Sui, Yinghui
    Deogaygay, Allison
    Okino, Mei-Lin
    Qiu, Yunjiang
    Sun, Ying
    Kudtarkar, Parul
    Fang, Rongxin
    Preissl, Sebastian
    Sander, Maike
    Gorkin, David U.
    Gaulton, Kyle J.
    NATURE GENETICS, 2021, 53 (04) : 455 - +
  • [25] Characterization of chromatin accessibility patterns in different mouse cell types using machine learning methods at single-cell resolution
    Xu, Yaochen
    Huang, FeiMing
    Guo, Wei
    Feng, KaiYan
    Zhu, Lin
    Zeng, Zhenbing
    Huang, Tao
    Cai, Yu-Dong
    FRONTIERS IN GENETICS, 2023, 14
  • [26] Expression-based discovery of variation in the human glutathione S-transferase M3 promoter and functional analysis in a glioma cell line using allele-specific chromatin immunoprecipitation
    Liu, XM
    Campbell, MR
    Pittman, GS
    Faulkner, EC
    Watson, MA
    Bell, DA
    CANCER RESEARCH, 2005, 65 (01) : 99 - 104
  • [27] LABELING OF ALLELE-SPECIFIC OLIGONUCLEOTIDES WITH DIGOXIGENIN USING A NONENZYMATIC METHOD FOR THE DIAGNOSIS OF SICKLE-CELL DISEASE AND BETA-THALASSEMIA
    BURGI, W
    KELLER, E
    SCHMIDHEINI, T
    MOLECULAR BIOLOGY OF THE CELL, 1992, 3 : A324 - A324
  • [28] Backhaul Aware User-Specific Cell Association Using Q-Learning
    Klaine, Paulo Valente
    Jaber, Mona
    Souza, Richard Demo
    Imran, Muhammad Ali
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (07) : 3528 - 3541
  • [29] Single-Cell Genotyping of Single-Nucleotide Mutations Using In Situ Allele-Specific Loop-Mediated Isothermal Amplification
    Yuan, Zilan
    Liu, Xinmiao
    Deng, Sha
    He, Guiping
    Zhang, Jiaqi
    He, Qiang
    Chi, Yuanlong
    Jiang, Xiue
    Xia, Xuhan
    Deng, Ruijie
    ACS SENSORS, 2023, 8 (11) : 4315 - 4322
  • [30] Prediction of Stem Cell State Using Cell Image-Based Deep Learning
    Kim, Minjae
    Namkung, Yong
    Hyun, Donghun
    Hong, Sunghoi
    ADVANCED INTELLIGENT SYSTEMS, 2023, 5 (07)