Asymptotic Heat Kernel Expansion in the Semi-Classical Limit

被引:5
|
作者
Baer, Christian [1 ]
Pfaeffle, Frank [1 ]
机构
[1] Univ Potsdam, Inst Math, D-14469 Potsdam, Germany
关键词
INEQUALITY;
D O I
10.1007/s00220-009-0973-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let H(h) = h(2)L + V, where L is a self-adjoint Laplace type operator acting on sections of a vector bundle over a compact Riemannian manifold and V is a symmetric endomorphism field. We derive an asymptotic expansion for the heat kernel of H(h) as h SE arrow 0. As a consequence we get an asymptotic expansion for the quantum partition function and we see that it is asymptotic to the classical partition function. Moreover, we show how to bound the quantum partition function for positive h by the classical partition function.
引用
收藏
页码:731 / 744
页数:14
相关论文
共 50 条
  • [11] Analytic Eigenbranches in the Semi-classical Limit
    Stefan Haller
    Complex Analysis and Operator Theory, 2020, 14
  • [12] Semi-classical limit of wave functions
    Truman, A
    Zhao, HZ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) : 1003 - 1009
  • [13] The semi-classical limit with a delta potential
    Claudio Cacciapuoti
    Davide Fermi
    Andrea Posilicano
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 453 - 489
  • [14] Semi-classical limit in a semiconductor superlattice
    Bechouche, P
    VLSI DESIGN, 1999, 9 (04) : 315 - 323
  • [15] The semi-classical limit with a delta potential
    Cacciapuoti, Claudio
    Fermi, Davide
    Posilicano, Andrea
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (02) : 453 - 489
  • [16] Semi-classical limit for random walks
    Porod, U
    Zelditch, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (11) : 5317 - 5355
  • [17] Existence of Dirac resonances in the semi-classical limit
    Kungsman, J.
    Melgaard, M.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2014, 11 (04) : 381 - 395
  • [18] Conformal blocks beyond the semi-classical limit
    Fitzpatrick, A. Liam
    Kaplan, Jared
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (05):
  • [19] A semi-classical limit of the gauge/string correspondence
    Gubser, SS
    Klebanov, IR
    Polyakov, AM
    NUCLEAR PHYSICS B, 2002, 636 (1-2) : 99 - 114
  • [20] Semi-classical limit of random walks II
    Porod, U
    Zelditch, S
    ASYMPTOTIC ANALYSIS, 1998, 18 (3-4) : 215 - 261